Mechanisms of contextual plasticity in localization of click sounds with a preceding distractor

Luboš Hládek1,2, Beáta Tomoriová2, Norbert Kopčo1
1Institute of Computer Science, 2Center of Applied Informatics, Faculty of Science, P. J. Šafárik University in Košice, Slovakia

Introduction
First arriving click sound from a priori known position influences perceived position of the lagging click sound (Distractor-Target) for stimulus onset asynchrony (SOA) 25-400ms (Kopčo et al., 2007) = Effect of preceding distractor
In addition, another effect was observed: responses on interleaved control trials (Target-only) were unexpectedly biased = Contextual plasticity

Goal of the study: Examine and identify neural mechanisms of contextual plasticity (CP) and additionally extend the knowledge of the effect of preceding distractor (EOPD) by manipulating temporal, statistical, and streaming properties of the contextual stimuli.

Candidate mechanisms of CP
1. Precedence effect buildup and breakdown causes increase or decrease of the echo threshold after different contextual stimuli on the scale of 1-10 seconds (Freyman, 1991; Keen & Freyman, 2009)
2. Adaptation after prolonged tone adaptor causes frequency-specific shift in perceived location away from adaptor (Kashino & Nishida, 1998)
3. Attention related effect increase intelligibility of target sounds at expected locations and the amount of expectation (Kidd, Arborgast, Mason, & Gallun, 2005; Kitterick, Bailey, & Summerfield, 2010). Distractor may act as anchor providing additional ‘relative cues’
4. Perceptual organization of streaming sequences changes after contextual buildup (Snyder & Weirtraub, 2013)

Hypotheses
1. The buildup process is related to the “amount of perceived context”. As echo threshold rises with number of clicks (Freyman, 1991), more Distractor-Target trials should increase CP
2. CP should lead to enhanced perceptual segregation of stimuli, distractor may act as anchor - with additional relative cues. We may observe decrease in localization variance
3. CP is affected by contextual organization of stimuli, more streaming in Distractor-Target stimuli (8-click distractor) should increase CP
4. If CP is related to adaptation, noise distractor should lead to CP, spatial specific decrease in localization variance might be observed
5. If we are trying to direct attention away from expected location of distractor, SOA may affect CP because SOA affects separability of target vs. distractor. This may persist to Target-only trials
6. EOPD will vary with SOA, not with frequency. Different distractors may interact with EOPD due to filter ringing or interactions on binaural processor

Methods
Two localization experiments. Setup
- Array of 8 loudspeakers with 11.25° separation
- One distractor, remaining speakers targets
Stimuli
- Target-only trials: no-distractor trials (2ms frozen noise)
- Distractor-Target trials: target preceded by distractor from medial plane (representing context)
- Condition fixed in a run

Experiment 1
- SOA 25-400ms
- Frequency of Distractor-Target trials = 50-90% in a run
- Distractor: single click
- Fixed SOA=25ms, frequency = 75%
- Three distractors: o single click o 8-click train with SOA=125ms o noise with identical RMS and duration as 8-click

Task
- Closed eyes
- Pointing to perceived location of target in self-paced manner

Experimental Procedure
- Experiment consisted of 60 runs, each containing 189/175 trials.

Figure 1 - Schematics of experimental procedure

Figure 5 - Standard deviations computed within subject, experimental run, trial type, and target Loudspeaker. Data were averaged across speakers, conditions, and subjects afterwards. Subpanels show data separately for Distractor-Target and Target-only trials as a function of SOA on x-axis for different frequencies of Distractor-Target trials.

Results - Raw data and baseline

Figure 2 - Experimental configuration and mean across subject responses in different experimental conditions. Further graphs were computed as a difference in using these data except Fig. 5

Baseline - compression of the response range in both experiments due to the response method can lead into underestimation of observed effects

Results - Contextual plasticity

Figure 3 - CP as a function of target location on x-axis. Lines markers and subpanels distinguish conditions with various SOA and frequency of Distractor-Target trials (Exp 1) and type of distractor (Exp 2). Direction of the induced shift is away from distractor. Error bars are SEMs. Open squares in Exp1 and Exp2 had identical conditions.

Biases
- CP decreases with target laterality
- CP increases with increasing frequency of Distractor-Target trials
- CP increase at shortest SOA only at closest target locations
- 8-click increases CP mostly at the closest target locations
- noise distractor decreases CP (but CP is still present)

Temporal profile - Figure 4
- CP builds-up within 2-10 subruns (14-70 trials)
- CP decreases within 5 subruns (30 trials) but only at closer locations and during 8-click it does not reach baseline (3 subruns 21 trials post-adaptation in Exp2)
- baseline spontaneously drift which increases CP

Figure 6 - Effect of preceding distractor as a function of target laterality on x-axis. For Exp 1 subpanels represent different SOA, line markers frequency of Distractor-Target trials. In Exp1 line markers denote distractor types.

Effect of preceding distractor
- average magnitude around 3°
- varies with SOA and target laterality
- strongest at 22°-45°
- small increase at the end of response range
- 8-click distractor is the same as single-click
- noise distractor creates linear effect form +2° (11°) to -2° (79°)

Discussion
Current findings are consistent with (Kopčo et al., 2007) - CP is caused in direction away from distractor
- magnitudes and shapes of EOPD are comparable
- variability is increased after immediate distractor

Hypotheses evaluation
1. Confirmed. CP varies with the number of contextual trials.
2. Rejected. Current data do not show clear increase on localization variance possibly due to high variability of response methods.
3. Confirmed. CP increases after increasing streaming of contextual stimuli
4. Confirmed. CP might be influenced by similar process as observed in adaptation paradigms, however, no decrease in variance was observed.
5. Partially confirmed. SOA has only modest effect on CP.
6. Confirmed. EOPD varies with SOA, noise distractor decreases EOPD possibly due to different activations of auditory filter or dissimilarity of distractor from target.

None of the potential mechanisms of CP could be ruled out, however, from previous literature it is not known how these mechanisms relate to each other, however, it is clear that temporal integration of spatial perception extends scale of seconds which should be incorporated in auditory models. EOPD is a different mechanism most likely explainable with peripheral processing and current models should be tested whether they can explain observed shifts in perception.

References and Acknowledgements


We support research activities in Slovakia/This project is being co-financed by the European Union