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70 6 BASIC STATISTICAL CONCEPTS IN ANOVA

The previous chapters laid the foundation for the basic statistical concepts in re-
search and statistics. Now it is time to relate specific analytical statistics to research
design. This chapter deals with the analysis of the simplest experimental design,
one in which two groups of individuals are treated differently and the effects of
the differential treatment are assessed. We will show how the results of this simple
experimental design are analyzed by means of the analysis of variance (ANOVA).
In Chap. 7 we will consider the corresponding analysis with MRC procedures.

6.1 SUBDIVIDING THE TOTAL SUM OF SQUARES

Suppose we examined the data from an experiment in which two groups received
different treatments but we did not take this fact into consideration in our analysis.
Although we could calculate a mean and a standard deviation to describe the total
data set, they would not be particularly useful, since this summary would obscure
any effects that the two different treatments might have. Of course, these effects
are precisely what we are most interested in. The analysis of variance does start,
however, with a sum of squares based on the total data set. This S5 is subdivided
(or partitioned) into a number of separate parts, each of which provides different
information useful for the statistical analysis of the experiment.

Notation and Labels

Let us consider the outcome of a hypothetical experiment in which fifth-grade
students are intoduced to a set of vocabulary words presented in the context

either of a lecture on physical science or of one on social science. A vocabulary .

test, with 60 words, follows the lecture. The purpose of the experiment is to de-
termine which of the two lectures produces better performance on the vocabulary
test. The researcher begins with a total of 24 subjects and randomly assigns them
so that each will fall into one of the two lecture conditions; equal numbers of sub-
jects (12) are assigned to each group. We will use s to represent the treatment
* group sample size and N to represent the total number of subjects in the experi-
ment. In this example, then, group sample size is s = 12, and N = 12 + 12 = 24.
(We will assume equal sample sizes for most of the experimental designs we con-
sider in this book; Chap. 24 deals with unequal sample sizes.)

We will call the independent variable factor A. The specific treatment condi-

tions (or “treatments,” for short) will be referred to as the levels of the independent
variable, symbolized as level a; and level a,. A lowercase.a without a subscript des- -

ignates the number of levels constituting factor A. In this example, there are a = 2
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levels: level a; (physical science) and level a, (social science). The total number
of subjects N is specified by multiplying the number of treatment levels or condi-
tions by the number of subjects per level—that is, N= (@) (s) = (2)(12) = 24.

The results of the experiment are presented in Table 6-1. The individual
scores Y on the vocabulary test can range from: 0 to 60. You will note that the no-
tational system has been expanded in order to specify precisely the treatment
membership of any given score. The symbol for the individual observations remains
the same (Y), with subscripts added so that we can refer to specific scores. Gen-
erally, we will use subscripts only when necessary to avoid confusion.

The sums or totals of the scores for the two different treatment groups are
specified by the notation A; and A;; thus, 4, is the sum of the Y scores for the
12 children assigned to level a; (physical ‘science) and 4, is the corresponding
sum for the 12 children assigned to level a; (soeial science). The grand total of
the scores (or sum of all the scores) is symbolized by T. Applying this notation
to the present example, we have

Ay =53+49+ - +32+27=480
Ay=4T+ 42+ - +11+6=312
T=A, + A, =480 + 312 =792

Table 6-1
Numerical Example

Physical Science.  Social Science

Ah—v ()
Yy =53 Y,a =47
Y, =49 Y4 =42
Y, =47 Yis =39
Yy=42 Y6 =37
Ys =51 Yip =42
Ys =34 Yie =33
Y, =44 Y, =13
Y =48 Yy =16
Yy =35 Yy, =16
Yio=18 Yy, =10
Yy, =32 Y3 =11
Yy =27 Yu= 6
Sam: A, =480 A, =312

Mean: ¥, =40.00 ¥,, =26.00
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The symbols for the two treatment means are ¥,, and ¥,,. Each is based on
s = 12 observations in this example. The grand mean of all the scores is designated
7, and is based on N = (a) (s) = (2)(12) = 24 observations. For these data,

s Ay 480
%i—“.ml“lwlNl"*O.OO
- Ay 312
V=" =Tg =269
- T ™

= = —=33.0
fr= =3 = B30

The Deviations

We have plotted the data from Table 6-1 in Fig. 6-1, using filled rectangles for
the scores from level a, and unfilled rectangles for the scores from level a,. Con-
sider the final score listed for a, in Table 6-1, namely, Y,, = 6. The deviation of
this score from the grand mean, Y, — Yy, is indicated at the bottom of Fig. 6-1.
We will call this deviation the total deviation. It is readily apparent that the total
deviation is made up of two parts, namely, the deviation of the individual score
from its group mean, or Y4 — Y,,, and the deviation of the group mean from the
grand mean, ¥, — . We will call these deviations the within-group deviation
and the between-groups deviation, respectively. Thus, we see that a single score
can be viewed in terms of how it differs from the total sample, how it differs from
other scores in its group, and, indirectly, how its group differs from the total sam-
ple. The deviations of Y,, are expressed in numbers as follows:

Mx»b - Mﬂﬂ. = A%&# - %inv + AMI”AN - ﬂu.v

Yar ¥, 2 ,

%333.? FLF%

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Yo — m.>u _ _ - .
_IISJ - Y B = one score from level 4,

O = one score from level a,

Y — wﬁ |

Figure 6-1 A systematic arangement of scores from Table 6-1. The components
of deviation for a single score (Y,,) from the grand mean (¥;) are shown beneath
the baseline.
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Total deviation = within-group deviation + between-groups deviation

6-33 = (6 —26) + (26 — 33)
ST = S
=27 = -27

These two component deviations provide useful information concerning the
outcome of an experiment. The within-group deviations, for example, re wmmn
the variability of subjects treated alike, that is, how subjects stll differ n«n: Wroz -”
they are in the same treatment condition. Because subjects in a particular n.mmanm:
group are all given the same treatment—either a lecture on physical science or
one .o= social science—any remaining variability in Y scores among the subjects
within a group must be due to factors other than the differences between nwougo
treatments. We will refer to any such differences as uncontrolled variability. An
alternative way of describing these same differences is to characterize them »m
flecting variability on the dependent variable Y that is not attributable t e
“explained” by the manipulation of the treatment. °e

The between-groups deviations, on the other hand, represent that part of the
total deviation that is associated with the two treatment conditions. You should”
realize that differences between groups will nearly always be Enmnmn even if th
independent variable is completely ineffective. This is due in large part to the fa M
that subjects are assigned randomly to the different conditions, creating &mﬂ,nsnw
between the group means that result entirely from chance. There is no satisfacto
way of avoiding this problem. For this reason, then, the between-groups ma&wnﬁ“%
is assumed to reflect the joint presence of two factors, chance differences as ﬂnw
as the possible differential effects of the treatments themselves.

6.2 SUMS OF SQUARES: COMPUTATIONAL FORMULAS

va. partitioning presented in Sec. 6.1 can be applied to all the scores in E.. ex-
periment. The three sets of deviations, when squared and summed, will produc
three corresponding sums of squares, namely, P ¢

SS7: the sum of squares based on the total deviations (that is, ¥ — ¥,), wh
the subscript T refers to the total variability . e

SSsia: Ennmca of squares based on the within-group deviations (that is
Y—7Y,), where the subscript S/A stands for the variability of m..&.onn“
(S) within each of the levels of factor A (4) ’
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§S,: the sum of squares based on the between-groups deviations &, -,
where the subscript A refers to variation associated with the independent

variable, factor A

In addition, you should note that the two component sums of squares 5554 and
S5, combine to equal the total sum of squares S5z That is,

S5y =SS0+ 5S4 (6-1)

These three sums of squares are the basic components of ANOVA. When you
are computing sums of squares with a calculator, you will find it much easier to
use computational formulas than to deal with the three sets of deviations for each
subject. We will consider the appropriate computational formulas next.

Basic Ratios
Computational formulas for any sum of squares can be expressed in terms of what
we will call basic ratios. Because all basic ratios involve the same set of simple
arithmetic operations, you should take note of these consistent operations, since
they will be found in all standard analyses of variance. The present design requires
three such ratios, one based on the Y scores, another based on the A treatment
sums, and a third based on the grand sum T. Each set of terms contributes to the
numerator of a different basic ratio. More specifically, all members of a given set
. of quantities—the Y’s, the A’s, and T—are first squared and then summed. (In the
case of T, where there is only one quantity, just the first operation is performed.)
Using the data from Table 6-1, we obtain

T Y2 =532 4 492 4 - -+ + 112 + 62 = 31,136
T A? = 4802 + 312% = 230,400 + 97,344 = 327,744
T2 = 792% = 627,264

_ Each of these numerators is divided by a different number, which is found
by applying a simple rule that involves the term appearing in the numerator:

‘Whatever the term—that is, Y, A, or T—we divide by the number of
scores that contribute to that term.

For Y this number is 1, because each Y score is based on a single observation; this
is equivalent, of course, to not dividing at all. For A this number is s, because this
is the number of scores that are summed to produce any one of the treatment
sums, while for T this number is (a) (s), or N, because this is the number of scores
that are actually summed to produce the grand sum.
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For convenience, each basic ratio is gi i
. . given a special symbol consistin.
pair of brackets enclosing the letter code used to designate terms in the nu o
The formulas for the three basic ratios are memer

M=zy? 6-2)
T A®
U= s (63)
H.~
T} =
N=%® ©
Applying these formulas to the partial answers we have already caleulated, we find
¥l = wH.LuQ
327,744
Al = 5 = 2731200
627,264
E- = . =
1 D 26,136.00

Sums of Squares

&H.rmo three sums of squares are easily calculated by combining the basic ratios in
. erent patterns. These patterns are specified by the deviations themselves. You
will recall that the total sum of squares is based on the following %&unon“.

Y-¥;

The computational formula i ios identi i
The comp combines the two ratios identified by this deviation

S5y =[¥] -1} (6-5)
ﬁﬂnnw Nm“”nnwmww MMM %anﬂﬂ nwmwr% “B&%ac& Y scores or observations and
crvtons from e vl et e o el o

Y-,
Wrmowwﬂwﬁwnouﬁ formula combines the two ratios identified by these deviations
SSs14 = [Y] — [4] a|.mv

where [Y] is the basic ratio based on the individual
¥ . .
ratio based on the two treatment sums, soores and 4] the basie
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Finally, the between-groups sum of squares is based on the deviation of the
treatment means from the grand mean:
Y, ~¥r
The computational formula combines the two ratios identified by these deviations
as follows: )
. =[] -1T] (6-n
where [4] is the basic ratio based on the treatment sums and [T] is the basic ratio

based on the grand sum.
We will now calculate these sums of squares by substituting in these three

formulas the quantities we calculated in the last section:
557 = [Y] — [T] = 31,136 — 26,136.00 = 5000.00
SSs14 = Y] — [A] = 31,136 — 27,312.00 = 3824.00
= [A] — [T] = 27312.00 — 26,136.00 = 1176.00

As a computational check and as a demonstration of the relationship among
these three sums of squares, we will apply Eq. (6-1) to these calculations:

$S5.4 + 554 = 3824.00 + 1176.00 = 5000.00 = S5

Comment, There is an alternative way of computing the within-groups sum of
squares that illustrates some of the logic underlying the analysis of variance. The
SSsy4 is actually a composite based on the individual sum of squares for each of

the treatment groups. That is,
SSsja = SSsjay + SSspaz + (6-8)

In the present case, there are two within-group sums of squares, one for ¢, and
one for a,. Using the data from Table 6-1, we find

480*
SSsia; = (537 + 49 + +322 4+ 27%) — =TH
= 20482 — 19,200.00 = 1282.00
2
SSsiap = (472 + 422 + -+~ + 117 + 6 — wm

]
= 10,654 — 8112.00 = 2542.00

Completing the operations specified in Eq. (6-8), we find that
$Ssya, + SSsia, = 1282.00 + 2542.00 = 3824.00 = S5,
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6.3 MEAN SQUARES AND THE F RATIO

We are now ready for the final steps in the analysis: calculating variances and
forming the statistic to test for the presence of treatment effects, the F ratio. When
variances are employed in ANOVA, they are called mean squares; the F statistic
is simply a ratio of two mean squares. A mean square is essentially an “average”
sum of squares—not a strict arithmetic average, however, but one based on degrees
of freedom rather than on the number of observations.

Degrees of Freedom

As indicated in Chap. 4, the general rule for noEvanm the degrees of freedom
(df) associated with any sum of squares is

number of ber of
df = { independent | — pumber o 69
observations restraints .

Consider the df associated with SSy. The number of independent observations is
(a) (s). There is one restraint placed on this sum of squares, namely, that the sum
of the deviations is zero. Thus, dfy = (a)(s) — 1.

Consider next the SS,. In this case, there are a independent observations, one
for each of the a treatment means. The same restraint placed on SSy is also placed
on this sum of squares: the sum of the deviations of the treatment means from
the grand mean must equal zero. As a consequence, df, = a — 1, one less than
the number of treatment means.

The determination of the df associated with the within-groups sum of squares
554 is a bit more complicated, but follows the general rule specified by Eq. (6-9).
You will recall from Eq. (6-8) that this sum of squares represents a pooling of
separate SS’s obtained from the different treatment groups. The df are obtained
the same way. That is, the number of independent observations associated with
any treatment group is s and the df for the corresponding SS is s — 1; the restraint
is that the sum of the within-group deviations must sum to zero for each of the
groups. The df,, is calculated by combining the separate df’s for the different

groups:
dfsia = dfsia, + dfsja, +

Since the df for each group is s — 1 and there are a different groups, we can express

. the formula as

&w\k = Anv Am -1)
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Mean Squares
The variance estimates required in ANOVA are given by the formula
S5 .
= 6-10
MS 7 (6-10)
As applied to the two component sources of variance,
554 S5s14
MS, =+~ and MSg, ===
4 df 4T dfsya

The mean square on the left is influenced by two factors, the presence of treatment
effects and uncontrolled variation, while the mean square on the right is influenced
by uncontrolled variation alone. That is, the MS, represents the deviation of the
treatment groups from the grand mean, which in essence is due to the effects of
the independent variable as well as the chance differences that occur in any experi-
ment; the MSg,, represents the deviation of scores within the treatment groups,
and since all members of each group are treated alike, it reflects uncontrolled or
random variability.

The F Ratio
The final step in the calculations is the formation of the F ratio, which is used to
test for significance (see Chap. 8). For the present type of design, the ratio consists
simply of the treatment mean square MS, divided by the within-groups mean
square MSg, 4:

MS,

= (6-11)
MSg;,

F

The result of this division, the F statistic, will be used to evaluate the effectiveness
of the treatment conditions against the background & uncontrolled, chance factors
that are always present and contribute to group differences.

Summary of the Analysis

The computational formulas for the completely randomized single-factor ANOVA
are presented in Table 6-2. The first column lists the sources of variance usually
extracted from the analysis. Column 2 gives the three basic ratios that are combined
in different patterns to produce the sums of squares. These patterns are indicated
in column 3. The formulas for the degrees of freedom, mean squares, and F ratio
are entered in the remaining columns of Table 6-2.
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—
Table 6-2
Summary of the Analysis of Variance
Source  Basic Ratio ss daf MS F
2
A w=2L w-om -1 S M
s df, MSs,4
A M=ZY M- @6-1 54
dfs1a
1 r
Total [T]= @® -1l @@ -1 \

The results of the numerical example are summarized in Table 6-3. The $5's
were calculated previously and are entered without comment in the table. The df
for the three sources are found by substituting in the formulas provided in Table
6-2. To be more explicit,

dfy=a—1=2-1=1
fga=@G6-1)=2(12~-1) = @)A1 =22
dfr=@E) —1=A2) —1=24—-1=23

As a computational check, we can verify that the df for the two component sums
of squares equals the df for the SSy. That is,

dfy+dfsa=1+2=23=df;

The two mean squares are calculated next by dividing each SS by the appro-
priate df. For this example,

1176.00 3824.00

Ms,=~—7—=117600 and Ms,=——

= 17382

These numbers are entered in the appropriate column of Table 6-3. The F ratio
is found to be

MS, 117600
F=—A == =677

The meaning and usefulness of this statistic will be considered in Chap. 8. For
now, we will simply note that the ratio of the numerator to the denominator is a
rather large value that is not likely to occur when only chance factors are present.
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¢ - Table 6-3
Summary of the Analysis

Source ss df MS F

A 117600 1 117600 6.77
S/A 382400 22 17382

Total 500000 23

6.4 SUMMARY

We have shown how a simple two-group experiment may be analyzed by means
of ANOVA. With ANOVA the focus is on differences and deviations. Two sources
of variation are critical for the analysis of this design: variation that is attributed
to the difference between the two treatments and variation that is not and is uncon-
trollable. These sources are represented by the sums of squared deviations from
means. The SS, reflects the deviation of the two treatment means from the grand
mean. For the within-groups source, the SSg,, reflects the variability of subjects
given the same treatment condition. The next step consists of calculating mean
squares, which is accomplished by dividing the sums of squares by their appro-
priate numbers of degrees of freedom. Finally, we calculate the F statistic by dividing
the treatment mean square MS, by the within-groups mean square MSg,,. This
statistic is used to decide whether the results of the experiment reflect at all the
effects of the independent variable. The details of this last step will be discussed
in Chap. 8. .

6.5 EXERCISES

1. In Sec. 6.1, we showed how the deviation of a particular score (Y,,) from
the grand mean (¥,) may be divided into two components, the deviation of the
score from its group mean (Y, — ¥,,) and the deviation of the group mean from
the grand mean (¥,, — ¥7). These deviations form the basis for the analysis of
the results of a single-factor experiment.

a. Calculate the same deviations for all the scores in Table 6-1, verifying in
each case that the sum of the two component deviations equals the de-
viation from ¥.
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b. Square all the deviations for all the subjects and then sum each set of
squared deviations over all the subjects. Verify that the three sums are
identical to those obtained with the computational formulas in Sec. 6.2
(see Table 6-3).

2. A psychologist decides to determine the effectiveness of a new drug on
the ability of rats to learn a difficult maze. The design consists of two conditions,
one in which the drug is administered by injection 2 hr before testing and another
in which an inert substance (e.g., a saline solution) is substituted for the drug.
Each group is represented by s = 9 subjects randomly assigned to the conditions.
The response measure is the number of trials required to learn the maze according
to a criterion of errotless performance. The following data are obtained:

Drug No Dmg
30 36
26 35
31 27
30 32
24 29
28 41
25 36
33 28
31 30

Calculate the means and standard deviations for the two treatment groups.

. Calculate the basic ratios.

Find the sums of squares for 4, S/A, and T.

Determine the degrees of freedom and calculate the mean squares.

Construct 2 summary table and calculate F. (Save this informaton for
Problem 1 at the end of Chap. 8.)

P Ap T
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Once we have formulated a researchable hypothesis, then collected data to test
that hypothesis, and, finally, calculated statistics to describé and summarize the
tesults, we need to determine whether the difference observed between the two
treatment means (or the relationship found between the two variables) is due to

- the independent variable or whether it is due entirely to chance. To answer this
question, we turn to a formal statistical procedure called hypothesis testing. We
will examine this procedure first within the context of ANOVA and then turn our
attention to the significance of correlational statistics. As you will see, both statis-
tical tests result in the same conclusion concerning the outcome of a two-group
experiment.

8.1 THE STATISTICAL HYPOTHESES

With ANOVA, we use the F statistic to evaluate the reasonableness of a statistical
hypothesis known as the null hypothesis, usually symbolized as Hy. The null hypoth-
esis is quite distinct from a research hypothesis, which usually asserts that the
treatment conditions will actually produce true differences in performance. In con-
trast, the null hypothesis usually states that the independent variable in the ex-
periment is completely ineffective and that the means associated with the two
treatment populations (symbolized as y, and p,) are equal—that is,

Ho: py=p,
If the difference between the two sample treatment means is too large to be reason-
ably due to chance factors (and what we mean by “reasonably” we will explain
below), the null hypothesis is rejected in favor of a second statistical hypothesis,
called the alternative hypothesis (H,). This hypothesis states that the two popu-
lation treatment means are not equal: .
Hy gy #pp

A rejection of Hy leads to the acceptance of H,, which in effect implies support
of our original research hypothesis. Failing to reject Hy, on the other hand, can be
viewed as a failure of the experiment to support the research hypothesis,

The Logic of the F Ratio
In Chap. 6, we indicated that the F ratio (Eq. 6-11) is written as

F=

MSs4
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The denominator of the F ratio, MSg,,, provides an estimate of error variance
regardless of the status of the null hypothesis, and for this reason it is often called
the error term. To elaborate, you will recall that MSs, 4 is based on the variability
of subjects who are treated alike, which means that differences between the two
treatment groups do not enter into its determination. As a result, MSg,, simply -
reflects uncontrolled variability—otherwise known as error variance—regardless
of whether H, is true or not.

In contrast, the numerator of the F ratio, MS 4> is based on the difference be-
tween the two means and is sensitive to the presence of any treatment effects,
Suppose for the moment that the null hypothesis is true. Under these circum-
stances, any difference observed between the two treatment means must be due
to chance factors that result from the random assignment of subjects to groups
and other unsystematic factors. This means, then, that MS, reflects only emror
variance. On the other hand, when the null hypothesis is false, MS, reflects the
Joint operation of two factors: error variance and treatment effects,

What are the implications of these considerations for the F ratio? First, if the ~
null hypothesis is true, the F ratio consists of one estimate of chance factors, based
on the chance difference between the two groups, divided by another estimate
of chance factors, based entirely on within-group differences. That is, both the
numerator and the denominator of the F ratio would contain estimates of ex-
perimental error, and we would have

Experimental emor
Experimental emor

If such an experiment were conducted a large number of times and F ratios were
determined for each experimental result, we would expect the average of these F
ratios to be approximately 1.0,

On the other hand, if the null hypothesis is false, the numerator of the F ratio
will be systematically larger than the denominator—on account of the additional
presence of treatment effects—and the average F will be greater than 1.0. More
explicitly, the ratio will become L

Treatment effects + experimental error
Experimental error

Unfortunately, the fact that average values of F will be different when H, holds
and when H, holds does not really help us in deciding between the two hypotheses
in a specific experiment. That is, we must realize that a small F ratio does not
guarantee that the null hypothesis is true (and the alternative is false), since chance
factors may be counteracting any true difference in the population. By the same
token, a large F ratio does not necessarily imply that the null hypothesis is false
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(and the alternative is true), since large differences between the two groups can
occur entirely on the basis of chance. What this means is that we simply cannot
be certain of avoiding incorrect decisions under these circumstances—that is, when
chance factors are operating in an experiment. The best we can do is to adopt a
course of action that minimizes incorrect decisions, ’

The Sampling Distribution of F

Let us see how we can minimize the occurrence of incorrect decisions. Suppose we
have programmed a computer to draw two samples of scores randomly from a large
population and then to compute the F statistic. As we have described the situation,
the null hypothesis is true, since the two “treatment” means are drawn from the
same underlying population. The scores are then “returned” to the population and
the procedure is repeated a large number of times. From what we said in the last
section, we would expect the mean of the F's to be close to 1.0.' A frequency
distribution of these F's would provide a picture of the values F will take when H,
is true. Such a distribution is called the sampling distribution of the F statistic,

Instead of using a computer to generate a sampling distribution of F, we can
draw the distribution from formulas provided by statistical theory. Consider the
sampling distribution of F that is presented in Fig. 8-1. This is the theoretical
sampling distribution of F appropriate for the numerical example we introduced
in Chap. 6, namely, two lecture treatment groups with 12 subjects in each group.

As you can see from the figure, extreme values of F occur fairly infrequently.
Since it is relatively unlikely that large values of F will occur when H, is true, we
adopt the strategy of rejecting the null hypothesis whenever this happens in an
actual experiment. All we need is to decide on a definition of “extreme” values of
F. Once this is done, we can establish a rule to reject H, when the F from an
experiment falls within the region of extreme values, and not to reject H,, the rest
of the time.

Most researchers in the behavioral sciences have adopted a region known as
the 5 pexcent level of significance. This is an interval that begins ith some value
of F, extends to infinity, and contains the upper 5 percent of the distribution. We
refer to this value as the critical value of F. In the present example, the critical

! Technically, the median of the F distribution equals 1. Actually, the mean s slightly larger

than 1, since it is defined as
ienom.
mbn:s._ -2
This fact does not materially affect the thrust of the argument, however.
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Relative frequency

Values of F

Figure 8-1 Sampling distribution of F when there are a = 2 groups of s = 12
subjects each.

value of F that divides these extreme values from the rest is F = 4.30. That is, 95
percent of the F's have values less than 4.30, while 5 percent have values equal to
or greater than 4.30. If we follow the decision rule described in the last paragraph,
we would reject H,, if F > 4.30 (read “F is greater than or equal to 4.30”) and not
reject Hy when F < 4.30 (vead “F is less than 4.30). Stated more formally, the
decision rule becomes

Reject Hy when Fjpyepes 2 4.30; otherwise, do not reject H,,.

The F distribution is in reality a family of curves; the one appropriate for any
experiment is determined jointly by the df associated with the numerator and with
the denominator terms of the F ratio. Since the theoretical sampling distributio
are continuous functions, we express the significance level in terms of probability,
which is based on the proportion of the total area under the curve associated with
the rejection region. The Greek letter « (alpha) is used to symbolize this probability.
The 5 percent level of significance is specified by the notation

« =05

The F Table

The information necessary to determine the critical value of F, namely, the begin-
ning of the rejection region, is found in Table A-1 of the Appendix. To use the F
table, we will need to know three factors: the df for the numerator of the F ratio, the
df for the denominator of the F ratio, and the significance level we have adopted.
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In our numerical example presented in Chaps. 6 and 7,

&\.:E: = &qk =1 and &«n&si. = m.‘w\h =22

We coordinate these two numbers (the column labeled 1 and the row labeled 22)
and find critical values of Fin Table A-1 for six different significance levels (x = .25,
.10, .05, .025, .01, and .001). Since we are interested in establishing the rejection
region for the 5 percent level of significance, we will use the value listed for & = .05,
namely, F = 4.30. Qur decision rule, which we introduced earlier in this section,
becomes

Reject Hy when Fopyres = 4.30; otherwise, do not reject H,.

From Table 6-3, we see that our calculations produced an F of 6.77, which exceeds
the critical value of F specified by the decision rule. Consequently, we reject H,,
accept Hy, and conclude that there is a real difference between the two groups
such that children receiving the physical science lecture learn more <on»v=g
words than do children receiving the social science lecture.

We could state this conclusion in other ways. We could say, for nxmﬂv_ﬁ that
the difference between the two groups is significant, or that significantly more
vocabulary words are learned when the words are introduced in the context of a
physical science lecture than in a social science lecture. The term significant is
not synonymous with important, however. It simply is a shorthand way of stating
that the difference observed between the two groups is sufficiently large not to be
reasonably attributed to chance factors.

You may have noticed that the df values listed in Table A-1 are incomplete. The
intervals between successive columns and rows increase with the larger numerator
and denominator df’s. Fine gradations are not needed for the larger df values, how-
ever, since the numerical values of F do not change greatly from interval to interval.
When the critical value of F falls between two rows or two columns of the table,
most researchers follow the practice of choosing the row or column with the smaller
number of df.

Other Significance Levels.  Although & = .05 is commonly used as the significance
level by most researchers, occasionally you will see other probabilities reported in
the research literature. As we have already noted, Table A-1 provides F values for
six significance levels. In most cases when researchers indicate a probability other
than a = .05, they are simply providing additional information for readers who may
wish to use a different significance level If you return to the F table (Table A-1),
you will see that the calculated F of 6.77 exceeds the critical value of F at « = .025
(F = 5.79). We could have reported our results as significant at p < .025, where
p stands for probability. This means that the null hypothesis would be rejected by
anyone adopting a significance level as small as a = .025.
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It is important to note that reporting a significance level other than .05 permits
no inference concerning the strength or magnitude of the effects. We point this
out because some researchers have assumed that results that are significant at
p < .025, for example, are better or stronger than results that are significant at
p < .05. Comparisons of strength are more appropriately made by obtaining some
measure of effect magnitude, which we will discuss in some detail in Chap. 10.

Analyses conducted with computers usually state the exact probability of the
obtained F statistic. This probability refers to the proportion of the sampling dis-
tribution of the F statistic falling at or above the F obtained in an experiment, In
the present case, for example, F = 6.77 has an exact probability of p = .0163.
Knowing this, a reader can simply apply his or her chosen significance level—for
example, « = .05—and reject H, if the exact probability is smaller (which it is in
this example) or not reject H,, if it is larger. In fact, the decision rule can be stated
quite simply, without specific reference to F; that is,

If p < .05, reject Hy; otherwise, do not reject Hy,.

In whatever manner the statistical test is reported, however, we must not forget
that our significance level is decided upon before the start of an experiment and -
alternative ways of reporting probabilities do not change this fundamental point.

8.2 TESTING THE SIGNIFICANCE OF A CORRELATION

As you have seen, the final step in an analysis of variance is to evaluate the .mmm.
nificance of the F statistic. What is evaluated is the null hypothesis, which states
that the population treatment means are equal If the F,,,,,,; falls within the re-
jection region, we conclude that treatment effects are present—that is, that the
population treatment means are not the same. We evaluate the statistical signifi- -
cance of the r statistic in a similar fashion. In this case, the null hypothesis states
that there is no relationship between X and Y in the population. In symbols,

Hy: p=0
where p (Greek letter rho) represents the correlation between X and Y in the

population. If this hypothesis is rejected, by applying procedures we will describe
in the next paragraph, we accept the alternative hypothesis,

Hy: p#0

and conclude that there is a nonzero relationship between the two variables. In the
context of the present example, we would conclude that there is a significant asso-
ciation between the type of lecture (the X variable) and vocabulary test scores (the
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-Yvariable). As we have stated before, this conclusion—that there is a-relationship—
is identical to the conclusion that-there is a difference between the treatments in
the number of words learned.

As already pointed out in Chap. 7, an appropriate F ratio is given by Eq. (7-1):

_ T df,
T A=/,

The df.in the numerator (df;,;) is-equal to 1, reflecting the fact that the df for'a
two-treatment experifent is 1. The'df in the denominator (df,,,) isequal toN — 2,
for reasons'we will discuss in 4 moment: For ¢onvenience, we can rewrite Eq. (7-1)
as follows:

F

s
A=)
Entering the appropriate data into this equation, we find

Fe (4850)%
= (4850)%/24 — 2)
2352 2352

F 81

This F is evaluated in the usual manner with
Yfom. =1 a0d  dfumom =N—-2=24-2=22

.Since the Fypyemeq is greater than 4.30 (the critical value for « = .05, when df =1,
22), we can declare that the correlation between the type of lecture and vocabulary
scores is-significant. Yot should niote that the value of F, ;.. is identical within
rounding to that calculated with ANOVA (6:77).

Compatison with ANOVA

In order to gain further insight into:the parallels between ANOVA and MRC, we
can explore and dissect the two F ratios used ‘in the statistical evaluation of the
corresponding null hypotheses. Suppose we express Eq. (8-1) in terms of sums
of squares. This is easily accomplished by recalling from Eq. (5-15) that

SSreq.

SSy '

and from our discussion in Chap. 5 that

2=

1- e B
S5y

82 TESTING THE SIGNIFICANCE OF A CORRELATION ’ 103

and then substituting this information in Eq. (8-1). The final result of substitution
is.

e e
SSres/(N—2)

What do the components in Eq. (8-2) represent? Let us begin with the de:
nominator, SS,,, /(N — 2). Of particular relevance is the term N — 2, which reflects
the number of independent observations (the total number of subjects) and the
value 2. This value 2 represents the two restraints or restrictions placed on the
calculations. These result from the process of obtaining the predicted Y values (¥’)
from the regression equation, which uses two pieces of information in order to
estimate the slope b and the intercept a of the regression line from the N pairs of
observations available. From the ANOVA framework, the corresponding sum of
squares is S5s;,, where the restrictions result from estimating the two group means -
Y4, and Y, upon which the deviations of the two sets of Y scores are based: The
degrees of freedom in this latter case are indicated as dfs;q = (@) (s — 1), where q
is the number of treatment groups and s is the number of subjects assigned to
each trearment group. :

. Both of these sources of variance have the same number of degrees of freedom.
That is,

F (8-2)

Qfree, =N—2=24-2=22:

= @D6E-D=@QU2-1) =22
In other words, the quantity N — 2 represents the degrees of freedom associated
with $S,,, , and nr.:mm” the denominator of Eq. (8-2) is a mean square—in this case;
2 mean square for the residual deviations found with linear regression (MS,,,).
That'is, -

- = aﬁu.

Though we'indicated that the equation for the F ratio will be different for experi-
ménts in which there are more than two treatments, the conceptual underpinnings
are the same. That is, the error term in the-denominator will include the df for
the error term in the experiment. .

Now let us look at the nimerator of Eq.- (8-2). The df associated with SSre.
is 1; this ‘sole df represents the deviation of the slope- constant’b-from zero, Thus,
the numerator could have been written as




104 8 SIGNIFICANCE AND HYPOTHESIS TESTING

In sum, the F value obtained to test the significance of a correlation coeffi-
cient is a ratio of the MS, ., /MS,.,., With df ., =1 and dfyemem. = N — 2. This is
equivalent to the F ratio of ANOVA for a two-treatment condition, which is
F =MS,/MSs;,. In correlational analysis, the denominator reflects an error term
against which the effect, MS,,, , in the numerator is tested; similarly, in ANOVA,
the denominator reflects experimental error and the numerator reflects a com-
bination of treatment effect and experimental error.

8.3 TESTING THE SIGNIFICANCE OF b IN
THE REGRESSION EQUATION

How does the b value relate to 7 in terms of testing a specific hypothesis in a two-
group design? Since we have shown in Sec. 7.2 that the regression coefficient based
on contrast coding represents information about the difference between the two
means, it makes sense to ask whether the value is significantly different from zero.
An F test for assessing the significance of the regression coefficient is given by?
UN
E.d-.\M Ax —-X 2
For the data in Table 7-1, we previously calculated the following quantities:

b=700 S, =382400 I (X-—X2=2400

F= (8-3)

Thus,
_ S5, _ 382400
MS,., = o= =1ne
Applying Eq. (8-3) yields:
7.00% _49.00

F = 6.77

173822400 ~ 724

which is equal to the F we obtained when we conducted the test of significance of
7. In other words, a test of b, which reflects the relationship between X and Y, is
identical to a test of 7, which is the index of the relationship between X and Y.
Furthermore, these tests equal the ANOVA. test of the difference between the two
means for the two levels of X.

2 This test is usually expressed as a t test (see Edwards, 1976, p. 106; and McNemar, 1969,
p- 160). In this form, the denominator is the standard error of the regression coefficient.
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8.4 SOME THEORETICAL CONSIDERATIONS

In this section, we will first consider some problems that are inherently associated .

with testing hypotheses regardless of whether the context is ANOVA or MRC.

Next, we will discuss a related topic, the sensitivity of a statistical test in detecting

differences in the population. We will conclude with a brief consideration of the
statistical models underlying ANOVA and MRC.

Frrors of Statistical Inference ‘w.

It must be realized at the outset that conclusions drawn from any statistical test
may be in error. We must make this dismal pronouncement because we have no
way of determining the exact situation existing in the treatment populations. All
that we have are the data from an experiment, which are assumed to consist of
random samples drawn from the different treatment populations. Consequently,
any conclusion we may extract from our data represents whiat is in effect an edu-
cated guess about these unknown treatment populations. '
What this means, therefore, is that we have no sure way of avoiding errors
of statistical inference and, moreover, that we will never know when we are com-

mitting them! Realistically, all that we can do is to take steps to minimize the .

occurrence of such errors. We represent our calculated risk taking in terms of
probabilities, but in speaking of probabilities we emphasize the susceptibility to
error of all conclusions based on sample data. We will consider two types of error:
an error we may commit whenever we reject the null hypothesis, and another we
may commit whenever we do not reject the null hypothesis. These are known as
type I exror and type 11 error, respectively.

Type I Emmor.  As we have implied, we make 2 type 1 etror whenever we falsely

—

=

reject the null hypothesis—whenever we conclude that differences exist among -

the population treatment means or that the correlation is greater than zero when

choice of significance level. The probability specified by & = .05, for example, refers
to the proportion of F's that theoretically occur beyond a particular point on the

F distribution—in this case, the value of F marking off the 95th percentile (Fos).

Under the null hypothesis, values of F falling within this area will occur by chance
5 percent of the time. If we accept & = .05 and obtain an F that equals or exceeds
the value of Fs, we assume that this is not one of the extreme F's expected to
occur by chance and conclude instead that the null hypothesis is false. But note
that we are making an assumption—that the F has not occurred by chance—and

that is the very reason why type [ errors are committed. This also explains why we

-~ in fact such is not the case. We directly control the probability of this error in our
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set « at .05 or smaller: to keep the probability of our committing this type of error
at a reasonably low level. If we set « = 05, then, we agree in principle to make a
type I exror 5 percent of the time when the null hypothesis is true.

Type I Eror.  In the preceding section we focused-on the possibility of rejecting
the null hypothesis, when in reality the treatment means areequal or the correla-
tion is zero. What about the more interesting situation when the means are not
the same or the correlation is different from zero but we make the error of failing

reject the null hypothesis? When this happens, we commit a type I etror. The
probability associated with this error is represented by the Greek letter B (beta).
Unfortunately, we will never know the exact probability of this error, even though
we have a Greek letter reserved for it! This is because we must possess certain

details about the theoretical treatmeiit. populations—the means and standard de- -

viations or correlation—in order to determine this probability. The best we can
do is to make certain assumptions about these parameters and take steps that
are known to keep B at a reasonably low value. We: svill discuss these steps in a

moment.

Comment. We always face the possibility of making an error whenever we draw
conclusions from a set of data. The type of error depends-on the nature of the
conclusion drawn from the results. If the population treatment means really are
the same, we will make an error if we conclude that a difference exists between
them; this is known as a type 1 error. The probability of a type I exror is specified
by our choice of significance level. On the other hand, if in fact a difference exists
between the two treatment populations, we will make an error if we il to reject
the null hypothesis; this is known as a type I error. .

" You should note that we can make only one of these errors in any given
statistical test—not both. This is because each error is exclusively associated with
a different conclusion: a type I error is associated with rejecting the null hypothesis,
and a type Il error with not rejecting the null hypothesis. Since the decision rule
forces us to choose one of these two conclusions, we will be susceptible only to
the error associated with the particiilar conclusion we make.

null hypothesis. It is related to the probability of a type Il error as follows:
Power = 1 —8 (8-4)

If the probability of making a type I error is 30, for example, power is 1 — 30 =
-70. What this means is that if we repeated the same experiment over and over,

14 Power of a Statistical Test .
: Wgﬁ. s a statistical concept that refers to the probability of correctly rejecting the

]
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we would reject the null hypothesis 70 percent of the time; 30 percent of the time
we would commit a type 1 error. o

In contrast with type I error, which is controlled directly by our choice of
o,-type. I exror (or power) is controlled indirectly. Several factors are known to
increase power, but the most common way is to increase sample size s. There is a
practical limit to the use of this strategy, however, since experiments with already
large sample sizesrequire quite sizable increases in sample size to achieve the same
gain in power that one would obtain by adding subjects to a less ambitious experi-
ment. An experiment with a sample size of s = 5, for example, will benefit more
by the addition of another 5 observations per group than will an experiment with
s=J0ors=20.

Another way of increasing power consists of bringing under closer control
any unsystematic sources of variability that may be operating in-an experiment.
Most’ commonly, this involves reducing subject variability through the use of a
more homogeneous pool of subjects. Alternatively, more sensitive-experimental de-
signs might be chosen, suck as designs which use either subjects who are matched
on some relevant ability or factor or subjects who serve in all the treatment con-
ditions instead of only one. Both of these alternative designs can result in a sizable
increase in power, but require a type of statistical analysis other than we have
considered so far. A final method, called the analysis of covariance, provides a
statistical solution. whereby information about the subjects is collected before the
start of the experiment and then used to reduce the influence of chance factors
in the experiment. We will consider these alternative designs and the analysis of
covariance in later chapters.

Most. experiments in the behavioral sciences are designed without considera-
tion of power and, often, are seriously lacking in their ability to detect differences
among treatment means when they are present in the population. Cohen (1962)
and Brewer (1972) have observed astonishingly low levels of power for experi-
ments reported in the psychological literature. What this means is that findings
associated with lower power stand a poor chance of being duplicated by others
who wish to repeat or to extend these studies. For this reason, then, we feel it is
reckless not to obtain power estimates in the planning stage of an experiment. It
is'at this point that something can still be done to increase power if it is too low,
either by increasing sample size, by attempting to. reduce error variance, or by
choosing a potentially more sensitive experimental design or statistical procedure.
Power deterntinations are not difficult to obtain, and they often provide useful
insight into the nature of the phenomenon under study. Cohen devotes an entire
book (1977) to the discussion of power in a variety of different research settings.
Other, less comprehensive presentations are also available; see for example, Kep-
pel (1982, Chap. 4), Myers. (1979, pp. 86-88), and Winer (1971, pp. 220-228).
We suggest that you consult these references for further discussion of the tonic
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Statistical Models and Assumptions
The theoretical justification of the inferential procedures we have outlined in this

chapter is dependent on a set of assumptions and complex statistical proofs. We
- will highlight some of these arguments here.

The Analysis of Variance. Underlying ANOVA is a model—known as the linear
model—that expresses the score of a subject in any treatment condition as the
sum of certain parameters of the population. Three assumptions undetlie the use
of the F distribution for evaluating the null hypothesis. Briefly, we assume that the
treatment populations are normally distributed, that they have equal variances, and
that the individual observations are independent of (e, uninfluenced by) anyother
observations, either within the same treatment population or between treatment
populations.

Research over the last two decades has shown that even sizable violations of
the first two assumptions do not appear to distort the distribution of the F statistic
seriously.® The assumption of independence is usually satisfied by assignirig sub-
Jects randomly to the treatment conditions and administering the treatments in-

dividually to the different subjects. In short, the F statistic is amazingly insensitive -

10 even flagrant violations of the assumptions of normality and of the homogeneity
of variances. The main requirement is that subjects be randomly assigned to the
treatments.

Multiple Regression and Correlation. The model underlying the MRC analysis is

algebraically equivalent to the one underlying ANOVA. The difference is in the .

way the linear model is expressed. The assumptions underlying the use of the F
distribution in evaluating the null hypothesis are identical to those summarized
for ANOVA. That is, it is assumed that the treatment populations are normally
distributed and have equal variances and that all individual observations are inde-
pendent of one another.

85 SUMMARY

The final step in the statistical analysis of an experiment is the significance test.
Significance testing begins with the formulation of a null hypothesis (H,), which
will be evaluated with the statistical evidence generated by the study. This hypoth-

% The F statistic is sensitive to concurrent or simultaneous violations of the assumptions of
normality and homogeneity. See Myers (1979, Pp. 66—72) for an excellent discussion of
these problems.

85 SUMMARY ; . 109

esis mnbn.n»:% consists of a mBRE.nE waﬁoﬁnm that there are no treatment effects
or that there is no relationship between the variables. With ANOVA, for example,
the null hypothesis states that the two population treatment means are the same;
that is,

Hy: py=p,

With correlational analysis, the corresponding null hypothesis states that the cor-

relation between the independent variable X and the dependent variable Y in the -
population is zero. In symbols,

. . Hy:p=0

(An alternative approach is to test the significance of the regression coefficient;
in this case, the null hypothesis would state that the slope of the regression line
relating X and Y in the population is zero.) A second statistical hypothesis, which

. is called the alternative hypothesis (H,), is also formulated at this time, This hy-

pothesis essentially states that the null hypothesis is false, implying that there is a
difference between the population treatment means or a correlation in the popu--
lation between X and Y. Our task now is to decide which of these two statistical
hypotheses is more likely to be correct, given the outcpme of the experiment we
have just completed.

At this point, we return to the experiment and, depending on the statistical

‘approach we have followed, examine either the cbserved difference between the

two means (for ANOVA) or the correlation between X and Y (for MRC). Because
of the operation of chance factors, which stem largely from the random assignment
of subjects to conditions, we fully expect to find some difference between the two
means or a nonzero value for the product-moment correlation even if the null
hypothesis is true. To deal with this problem, we calculate an F ratio which relates
systematic variation (variation associated with the experimental manipulation) to
unsystematic variation (chance or random variation). Systematic variation, which
is reflected by MS, in ANOVA and by r? in MR, is influenced by two sources,
chance effects and potential treatment effects; while unsystematic variation, which
is reflected by MSg;, in ANOVA and by (1 — r?)/(N — 2) in MRC, is influenced
by chance factors alone.

We now compare the value of F obtained in the experiment with the so-called
critical value of F, which is based on the theoretical sampling distribution of F and
is found in a statistical table. This value sets the lower boundary of the range of F’s
within which we will reject the null hypothesis. If the observed F falls within this
range—if it is equal to or greater than the critical value of F—we reject the null
hypothesis and conclude that treatment effects are present in the population. If the
observed F is smaller than the critical value, we do not reject the null hypothesis.
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We discussed in detail the emors of stadstical .inference that may occur
through hypothesis testing, A type I error occurs when a null hypothesis is rejected
falsely; we keep the probability of such.errors at a low value through our choice of
significance level. A type II error occurs when treatment effects are present in the
population but the null hypothesis is not rejected; we control the probability of
'such errors indirectly through our choice of sample size and of experimental de-
sign. Power, which is defined in terms of type 1l -error, refers to the: sepsitivity of
a statistical test. A consideration of the statistical models underlying ANOVA and
MRC reveals that the F test is relatively insensitive to violations of the assumptions
of normality-and of homogeneous treatment variances.

8.6 EXERCISES

1. Oo.umEﬁ again the.experiment presented in Problem 2 of Chap. 6, which
you analyzed with analysis of variance.

" a. ‘State the decision rule for rejecting the null hypothesis, using o = .05. Is

the F.obtained from ANOVA significant?
b. What is the decision rule if instead you use « = .10? Is the F significant?

2. In Problem 1, Chap, 7, you calculated an r based on this same set of data.

a. Complete the correlational analysis by calculating the F ratio.

b. State the decision rule for evaluating the null hypothesis at & = .05. Is the
F significant?

¢. Verify that the F from ANOVA and that from the correlational analysis are
the same. '

General Coding of
Experiments for
MRC Analysis

9.1 THE CODING OF TREATMENT CONDITIONS
A General Rule for Coding
Three Types of Coding

9.2 THE CODE MATRIX
9.3 SUMMARY
9.4 EXERCISES
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You have seen how the analysis of a single-factor experiment by either ANOVA
or MRC is easily extended to any number of treatment conditiops. Up to this point,
we have considered only one statistical test—the evaluation of the omnibus null
hypothesis (indicated by the F ratio for MS or for R} .., )—which in most cases
is not of primary interest to the researcher. This is because the rejection of this
null hypothesis simply tells us that it is reasonable to conclude that there is 2
relationship (MRC) or that differences between treatment conditions are present
(ANOVA), but the rejection does not tell us which treatments are different. As 2
consequence, researchers usually plan an experiment around a limited number of
focused comparisons that will indicate exactly which aspects of the independent
variable are producing significant differences and which are not.

The nature of the analyses we might consider for any experiment generally
depends on the research hypotheses that guided us in the selection of the treatment
conditions to be included in the study. Quite naturally, the statistical analysis con-
sists of comparisons created by grouping different subsets of treatment means that
in turn provide answers to these questions. If our independent variable consists
of qualitative manipulations, the analysis will usually take the form of comparisons
between pairs of means. On the other hand, if it consists of a qugntitative mani-
pulation, the analysis will probably focus on an attempt to identify the underlying
trend or shape of the relationship between the independent and dependent vari-
ables. This chapter deals with the analysis of qualitative independent variables,
which are frequently called categorical or nominal independent variables. In Chap.
23 we examine the analysis of arend.

11.1 PLANNED COMPARISONS

Planned comparisons are analyses that are planned before the start of the experi-
ment. They are frequently obtained by translating research hypotheses into com-
patisons between means from selected treatments, Usually, these comparisons are
tested directly without any preliminary assessment of the ommibus F test. As you
will see, planned comparisons offer an analytically powerful approach to the anal-
ysis of an experiment. ’

Types of Planned Comparisons
In an experiment with more than two treatment conditions, the most common

planned comparison consists simply of the difference between two means. Typi-
cally, this difference will be based on a comparison of the mean of one treatment
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group with the mean of another treatment group. Such a comparison is often
called a pairwise comparison because it is based on a difference between a pair of
treatment means. Less commonly, researchers use complex comparisons in which
one or even both of the two means being compared are themselves averages of
two or more treatment means. We will consider examples of both types of com-
parisons—pairwise and complex—in a moment.

Either type of comparison is often called a single-df comparison, in reference
to the single degree of freedom associated with a difference between two means.
Viewed another way, a single-df comparison is equivalent to the treatment source
of variation (factor A) obtained from an experiment containing a = 2 treatment
groups, in which the df for the treatment source is 1.

As an illustration of planned comparisons, let us return to our continuing
example in which vocabulary words were introduced through lectures dealing with
physical science, social science, or history. Consider the information provided by
this particular experiment. There are three differences between pairs of means——
pairwise comparisons—that we might examine, namely, physical science versus
social science, physical science versus history, and social science versus history.
The original two-group experiment, which we considered first in Chap. 6, yielded
only the first difference. .

In addition, we might examine at least one complex comparison, the differ-
ence between an average of the two science lectures and the history lecture. Two
other complex comparisons that are possible with this design, an average of phy-
sical science and history versus social science and an average of social science and
history versus physical science, do not provide as sharp a comparison as the first
and probably would not be of interest to a researcher. In general, the quality of a
complex comparison depends on the logical basis for averaging treatment condi-
tions, In the first case, taking the average of the physical and social sciences and
comparing it with the history condition is based on commonalities between the
two sciences not shared with history; in the other two cases, the basis for the
comparison is less obvious.

One other type of comparison is common in the behavioral sciences. This
occurs when there is a subset of logically similar treatment conditions included
as part of a larger study. Suppose we included a fourth condition—a lesson on
biological science—in our growing vocabulary experiment. In addition to a variety
of new meaningful single-df comparisons afforded by this expanded design, it is
also possible to consider the differences between means within the subset of science
conditions (physical, social, and biological sciences). The degrees of freedom for
this subset are 1 less than the number of means being examined; that is, df,_, =
3 —1=2. Common examples of this type of analysis are also found in experi-
ments containing a control group and several expetimental groups. In these cases,
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researchers typically assess the differences within the set of experimental groups,
as well as a number of interesting single-df comparisons.!

The Omnibus F Test

The F test we considered in Secs. 10.1 and 10.2-—the omnibus F test~was a single
statistical test assessing either significance of the differences among all the treat-
ment means or the overall association between type of lecture and vocabulary
words learned. This test does not tell us, however, which of these differences are
significant and which are not. The ommibus F test evaluates what in effect is an
average of all possible pairwise-comparisons.

When we plan specific comparisons, we are not generally interested in the
outcome of the omnibus test. Indeed, there is no logical need to conduct the test
at alll With planned comparisons, our interest is in certain comparisons and not
in an average of all pairwise differences. On the other hand, without specific com-
parisons (or research hiypotheses) to guide the analysis—and specific compari-
sons may be lacking in certain exploratory work—we would probably conduct
the ommibus test first and let the outcome of the test determine whether we examine
the data in more detail

Such a situation might occur, for example, if we were comparing a number
of alternative procedures or products with the goal of identifying the best (or the
worst) from the entire set. Under these circumstances, then, the omnibus test tells
us whether it is reasonable to conclude that the population treatment means are
not all the same. If there is insufficient evidence to reject the omnibus null hy-
pothesis, we conclude that the differences among the treatraent means are most
likely the result of chance factors that are present in any experiment. On the other
hand, if we reject the null hypothesis, we conclude that the means are not all the
same and follow the omnibus test with a systematic examination of the data in
order to locate the specific differences between the treatment means that are re-
sponsible for the significant omnibus F. Again, we must stress that rejecting the
overall null hypothesis does not identify which means are the same and which are
different. Additional analyses are necessary to obtain that important information.

Most experiments in the behavioral sciences are designed to test specific hy-
potheses, however, and, in our opinion, should be evaluated directly, without ref-
erence to the omnibus test. We emphasize this point because one frequently
encounters experiments in the research literature that report the result of the
omnibus test first, followed by what are in effect planned comparisons. We suspect

! See Keppel (1982, pp. 123-124) for a more detailed discussion of this type of analysis.
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that in most cases the inclusion of the omnibus test is a habit the experimenter
acquired when this two-step procedure was in common use.

Post Hoc Comparisons

Post hoc comparisons refer to comparisons conducted after the data have been
assessed by an omnibus F. Post koc comparisons are unplanned in the sense that
they are suggested by the outcome of the experiment and are not specifically
anticipated during the planning stage of the research project. In most cases, they
consist of comparisons following up the results of the major analyses, Such com-
parisons should possess the same qualities associated with planned comparisons:
they should be analytical, and they should make sense,

Post hoc comparisons are sometimes called multiple comparisons, a some- .
what derogatory term that generally refers to the indiscriminate examination of
all possible comparisons—usually pairwise differences—in an attempt to locate signi-
ficant effects. There are special procedures available for dealing with multiple com-
parisons. We believe, however, that most researchers should restrain themselves
and focus their attention only on those compatisons that are meaningful and rele-
vant to the original questions guiding the investigation. We will elaborate this
point in the next chapter,
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Planned comparisons permit researchers to ask highly focused questions of a set
of data. Generally, such questions are expressed s differences between two means,
and take the form of single-df comparisons. The two means can be means from
specific treatment conditions or means formed by combining treatment condi-
tions. We will start by demonstrating how to calculate a “weighted” difference
between means and then show how easily the statistical test can be performed.

Single-df comparisons are conducted in two steps: first, calculating the differ-
ence between the two means of interest; and, second, evaluating the significance
of the difference, While you should have no difficulty in calculating the difference,
you probably have no clear idea how to translate this difference into a form that -
then can be used to form an F ratio. To facilitate this latter calculation, we will
introduce a procedure which at first will appear to obscure the process of calculat-
ing the desired difference, but which will simplify the calculation of the quantities
needed for the statistical test.
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Expressing a Difference as a Sum of Weighted Means
It is useful to express a single-df comparison as the sum of all the means taken

after each has been multiplied by a special ﬁﬁmrﬁ (or coefficient, as it is called).
Consider the following expression:

U= ()T + () (Fp) + () T) + - 11-1)

where i (Greek psi) = the difference obtained from a given comparison
€1, €3, €3 = the coefficients (or weights) assigned t the treatment
means in the experiment
¥, T, ¥,, = the corresponding treatment means

A compact way of expressing Eq. (11-1) is as follows:
V=2 @), (11-2)

The critical ingredient in these two formulas is the coefficients, which we create
to represent a particular comparison.

Let us see how this procedure works. Suppose we wanted to compare the
means of the two science conditions. We accomplish this without using coefficients
simply by subtracting one mean from the other, that is, taking ¥,, — ¥, (or
Y,, — ¥,,; the two differences have the same value except for the sign). We
may express this difference using Eq. (11-1), by assigning the coefficient ¢, = +1
1o physical science, ¢, = —1 to social science, and ¢; = 0 to history. Entering
these coefficients in Eq. (11-1), we find

U= (+DE0) + (-DE) + O F,)
=¥, -¥,+0
= W«ln - MI«.A»
As you will soon see, the advantage of expressing this difference between the two
science conditions as a sum of weighted means is that this difference () and the
three coefficients (+1, —1, 0) provide all the information we need to translate
the difference into a sum of squares and then into a mean square and an F ratio.

For comparisons between pairs of treatment means, the coefficients are simple
10 express:

+1 and —1 for the two means being compared
0 for all other treatment means in the experiment

For more complex comparisons, which involve means based on combinations of

treatmerit conditions, the coefficients must be created individually for each com-

parison, 2 process we will consider next.
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In general, the coefficients may be derived from a specification of the actual
difference under consideration. To illustrate, suppose we performed an experiment
with @ = 6 treatment conditions and wanted to compare the average of the means
for groups 1 and 2 with the average of the means for groups 3, 4, and 5. This
comparison, expressed as a difference between two means, becomes

_\wH 't Va Yy + ¥+ Ty
2 3

Rewriting this expression slightly, we have

U= (D Ty + T + (D Ty + Tu + 1) _
=(+HE) + (+HE) + (D) + (DT + (—H(F,)

From the original expression of the difference between two means, we easily deter-
mine that the coefficient is + 4 for the two groups contributing to the first average
(groups 1 and 2), —4% for the three groups contributing to the second average
(groups 3, 4, and 5), and 0 for the one group not entering into the comparison
(group 6). Thus, the set of coefficients—

+%, +%, -3 -3 -4 and 0

—which will be used in subsequent calculations, can be obtained directly from the
original mathematical expression representing a specific difference between two
sets of means.

To illustrate further, suppose we had the following treatment means: 15, 20,
and 30. If we wanted to examine a pairwise comparison between condition 1 and
condition 3, the difference would be ¥,, — ¥,, = 15 — 30 = —15. A set of coef-
ficients representing this différence is + 1,0, and — 1, which when substituted in Eq.
(11-1) produces

¥=(+DE,) + O, + (-DF,)
= (+1(15) + (0)0) + (-1)(30)
=15—-30= —15
or the same value we obtained by subtracting the third mean (Y,,) from the first

mean (Y,,). As another example, suppose we wanted to contrast condition 1 with
the average of conditions 2 and 3. In this case,

L o Y47,
.\\“uf.luisle
Hﬂulwowuouwmlmmulpo
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A set of coefficients representing this difference is +1, —%, and —4. These
coefficients are easier to see m». we represent the difference as
. ¥,+%
= |;.. B L)
V=7 2
where the coefficient for ¥, is = +1 and the coefficients for ¥,, and ¥, are
both —4. Substituting in Eq. (11-1), we find

¥ = (+D{U5) + (—HQ0) + (-1 (30)
=15—-10—-15= —10

For any single-df comparison, then, each treatment mean has a coefficient
chosen to reflect the difference under consideration. For all means entering into the
comparison, each coefficient has a numerical value and a sign; for means not
entering into the noE@ndmoP the coefficient is 0. An important property of a set
of coefficients is that they sum to zero. That is,

Zq=0 (11-3)
In the example with the six conditions,

Za=HD +(+HD + (D + (=D + (-H + O
=(+D)+(-1)=0

Coefficients generated by the method we have just outlined represent what may
be called a standard set of coefficients. As a matter of fact, equivalent sets can be
derived from the standard set simply by multiplying all coefficients in the set by
a constant; coefficients obtained this way will produce exactly the same numerical
outcome for the statistical test. Researchers often take advantage of this property
to transform fractional coefficients into more convenient whole numbers; this is
done by multiplying the standard set of coefficients by the lowest common de-
nominator of the set—that is, the smallest value that can be divided by both values
in the denominator of the coefficients. For example, if we multiplied the coefficients
for the complex comparison we derived previously by 6, which is the smallest
number divisible by both 2 and 3, we would produce the set (+3, +3, —2, —2,
—2, and 0). One advantage of standard sets, however, is that the value of thé
comparison itself () is always expressed as a difference between two means,
which is useful when a researcher wishes to construct confidence intervals base
on single-df comparisons (see Myers, 1979, pp. 305-306). Coefficients obtained
by multiplying the standard set g a constant cannot be conveniently used for nr_m
purpose, because the value of i will also reflect the multiplication.

-
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Sums of Squares

Computational Formula. A single-df comparison can be easily translated into a:
sum of squares, We start with the observed difference between the two means ().
By combining this difference with two other familiar quantities, namely, the co-
efficients ¢; and the sample size s, we can now calculate the sum of squares cor-
responding to any single-df comparison as follows:

() ()*
2 (c)? . .
Numerical Examples. As a simple illustration of Eq. (11-4), consider the mumer--
ical example from Chap. 6 in which only the two science lessons were compared. .
(We will present a more complex illustration in a moment.) From Table 6-1, we
find that the mean for the physical science condition is Y,, = 40.00 and the mean
for the social science condition is ¥, = 26.00; there are s = 12 children in each
group. The coefficients representing the difference between these two means are
+1 and — 1, respectively. From Eq. (11-1), we find

_\ = Anpv ANA.V + Ahnv Aﬂinu
= (+1)(40.00) + (—1)(26.00) = 40.00 — 26.00 = 14.00

Mwa.eiu. =

a4

Substituting in Eq. (11-4), we calculate
() ())?
= ()?
(12)(14.00)2
TFDTF (-D?
(12)(196) 235200

=———=———=1176.00
1+1 2

,mmgiw. =

You will note that this sum of squares is identical to the S5, we obtained in Chap. 6
(see Table 6-3). In fact, this is why we chose this example, namely, to demonstrate
that Eq. (11-4) and the general formula for calculating the between-groups sum of
squares are equivalent when both are applied to an experiment with a = 2 treatment
conditions.

For a slightly more complex illustration of the use of Eq. (11-4), consider the
data presented in Table 10-1, in which the example from Chap. 6 was expanded
to include a history lecture as a third condition. Suppose we were interested in
nozmcnmum all three comparisons between pairs of means. As you know, the co-
efficients for these pairwise comparisons are + 1 and — 1 for the two critical means
and 0 for all others (since they do not enter into the comparison). The three
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differences are:
Physical science versus social science

¥y = (+1)(40.00) + (—1)(26.00) + (0) (34.50)
= 40.00 — 26.00 = 14.00
Physical science versus history
Y2 = (+1)(40.00) + (0)(26.00) + (—1) (34.50)
= 40.00 — 34.50 = 5.50
Social science versus history
¥s = (0)(40.00) + (+1)(26.00) + (—1)(34.50)
=26.00 — 34.50 = —8.50

We can now substitute the necessary values in Eq. (11-4) to find the sums of squares
associated with these differences; that is,

(12) (14.00) 2352.00

SSeomp.1 = - =1176.

LT+ DI+ (- DT+ (0)2 2 117600

(12) (550)* 363.00

SSeomp. 2 = = -

oS DT @+ (—D2 2 o

12) (~850)2 67.

SSeo UDC-B0" 86700 _ 43350

3T+ (D2 + (D22

For an example of a complex comparison, consider the contrast between the
group receiving the history lecture and the two combined groups receiving the
different science lectures. The standard set of coefficients for this comparison
consists of +4%, +4, and — 1. The difference between the two means is

Yo = (+3(40.00) + (+1)(26.00) + (—1)(34.50)
=20.00 + 13.00 — 34.50 = —1.50
Substituting in Eq. (11-4), we find
_ (12)(-150)* 27.00
" GDTE (DT (D2 150
- Earlier we indicated that fractional coefficients may be transformed into whole

numbers to simplify calculations. If we multiply the standard set of coefficients in
this example by 2, we obtain + 1, +1, and —2. With these new coefficients,

Mmg = 18.00

¥ = (+1)(40.00) + (+1)(26.00) + (—2) (34.50) _ -

= 40.00 + 26.00 — 69.00 = —3.00

112 SINGLE-df COMPARISONS: THE ANOVA APPROACH 155

Substituting in Eq. (11-4), we have

_ (12) (—3.00)* __108.00
T EDTF DT (D7 6

SSeomp =18.00

You should note that while these transformed coefficients do produce the same

. value for the sum of squares (18.00), the value of ¥ (~—3.00) does not represent the

actual difference between the two means (—1.50). As you have seen, however, Eq.
(11-4) compensates for this change. Thus, you can calculate SS,,,,, with any con-
venient set of coefficients that are derived from the standard set representing the
difference under consideration.

Final Steps

The final steps consist of calculating 2 mean square, forming an F ratio, and eval-
vating a null hypothesis. A mean square is calculated by dividing a sum of squares
by the appropriate number of df. Because the df associated with a difference be-
tween two means is 1—that is, df,,,, = l—each comparison sum of squares is
also the mean square. More explicitly,

An F ratio is formed by dividing each comparison mean square by the error
term from the omnibus or overall analysis—that is, MSg,,. More specifically,

E - g.mneiv.
comp., = g.wh\l

as)

The statistical hypotheses for a single-df comparison may be expressed as

, follows:

Hy: ¥=0
m»“ g%O

where y represents the difference expressed in terms of population means. Rejecting
the null hypothesis leads to the conclusion that the observed difference between
two means () is significant. The obtained value of F is evaluated in the usual
manner, with F,,, being compared with the critical value of F listed under
Hosem, = 1, Ugenom. = dfs;4, and o equal to the level you have chosen for planned
comparisons (probably « = .05).

You should note two important features of the F test: (1) the test evaluates
precisely those comparisons you have earmarked for analysis during the planning



156 11 DETAILED ANALYSIS OF THE SINGLE-FACTOR DESIGN
Table 11-1
Summary of Comparisons

) Source ss daf MS F
Comp. 1 (physical science vs. social science) 117600 1 117600 844*
Comp. 2 (physical science vs. history) 18150 1 18150 130
Comp. 3 (social science vs. history) 43350 1 43350 3.11
Comp. 4 (combined sciences vs. history) 1800 1 1800 .13
sia 33 13936
*p<.05

stages of the study, and (2) the df for the error term (dfignem.) are determined
from the omnibus, overall analysis (MSs;,) and not from the within-groups df
associated with the particular groups involved in the analysis, That is, though the
comparison may be contrasting conditions 1 and 2, the error term is based on
information gathered from all the conditions in the experiment. The operation of
both of these features means that Eq. (11-5) provides a powerful test of hypotheses
generated by planned comparisons.

The analyses of the four comparisons we considered in the last section are
summarized and completed in Table 11-1. Each F is formed by dividing the com-
parison mean square by the error term obtained from the omnibus analysis
(MSg;4 = 139.36). The critical value of F, which is based on . = 1 and
dfgenom. = 33, 1s approximately 4.17 at o« = .05.2 Only the comparison between the
two science lectures (physical science versus social science) is significant.

Orthogonal Comparisons

Central to an understanding of ANOVA and MRC is the fact that a sum of squares
can be subdivided into separate and independent components. In ANOVA, we have
seen that SS; may be divided into two useful components, namely, the between-
groups sum of squares S5, and the within-groups sum of squares SSs/4. In MRC,
the equivalent breakdown consists of dividing the total variability in the dependent
variable (SSy) into two sums of squares, one representing the variability associated
with group membership (SS,,,) and the other a residual sum of squares—the
variability in Y (the dependent variable) not accounted for by group membership
AMM‘E.V .

2 We have used F(1, 30) for the critical value, which s a slighdy larger value than required
and yields an actual significance level that is somewhat smaller than .05.

comparisons. In symbols,
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It is generally the case that any sum of squares with more than 1 df can be
divided into two or more independent sums of squares, and that the maximum
number of such subdivisions is equal to the number of degrees of freedom associated
with the sum of squares being subdivided. For the overall analysis, however, we
are interested only in the between-groups and within-groups sums of squares. For
planned comparisons (or single-df comparisons conducted following the omuibus
test), we are obviously interested in what we might call comparison sums of
squares—usually single-df comparisons—that contribute to the overall between-
groups variability. .

The statement that any sum of squares can be divided into two or more in-
dependent sums of squares holds only for what are known as orthogonal compari-
sons. Two single-df comparisons are said to be orthogonal if they reflect independent
or completely nonoverlapping pieces of information. What this means is that the
outcome of one comparison gives no indication whatsoever about the outcome of
the other comparison. If all comparisons are orthogonal to one another, we refer :
to them as a set of mutually orthogonal comparisons. Thus, we can say that the
85, can be broken down into a set of df, = a — 1 mutually orthogonal single-df -

MM»A = M.wneiu. 1 + %hnwi? 2 L MM@!F a-1 Az.\mv

where the ¢ — 1 comparisons are mutually orthogonal. .

The orthogonality of any two single-df comparisons is easily determined by
comparing the coefficients defining the two comparisons. Let us call the coefficients
for one comparison ¢; and the coefficients for the other comparison ¢;. The two
comparisons are orthogonal if

(e () + (DD + () (B + - =0

or, more compactly,
2 =0 11-n

To illustrate, suppose in our three-condition experiment we were concerned
with a comparison of a; and a;; the coefficient would be +1 for a,, 0 for a,, and
—1 for a;. Now suppose that another comparison of interest was the average of
a; and a; versus a;; here the coefficients would be +4% for a;, ~1 for a,, and
+14 for a,. Application of Eq. (11-7) yields the following:

(+DHD + O D+ (-D(+hH =4+0-%=0

Given this result, our two comparisons are orthogonal and are not providing re-
dundant information. Thus, orthogonality is verified simply by multiplying corres-
ponding pairs of coefficients——one pair for each level of factor A—and determining -
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Table 11-2
Coefficients for Single-df Comparisons

Physical Science  Social Science  History

Comparison 1 +1 -1 0
Comparison 2 +1 0 -1
Comparison 3 0 +1 -1
Comparison 4 +4 +% -1

that the sum of the products equals zero. Any value other than zero indicates that the
two comparisons are not orthogonal.

In Table 11-1, we tested the significance of the difference between each pair
of group means, as well as the difference between the mean for the two combined
science groups and the mean for the history group. The coefficients for these com-
parisons are presented in Table 11-2. From Eq. (11-6), we know that the S5, can
be subdivided into a total of two orthogonal comparisons (a —1=3 —1=2),
As surprising as it may be, only one set of orthogonal comparisons can be formed
with the comparisons in Table 11-2. What about the first twor comparisons? If we
substitute the coefficients for these two comparisons in Eq. (11-7), we find

DD+ (-DO)+0)(-1)=1+0+0=1

Since the sum is not zero, the two comparisons are not orthogonal. In fact, no set
containing any two of the pairwise comparisons is orthogonal. (You may wish to
verify this statement for yourself) The only remaining possibility is a set that con-
tains the fourth comparison and one of the pairwise comparisons. Applying the
test to comparisons 1 and 4, we find that this is the orthogonal set:

FVEHFD + (CDED + O (- =%4-t+0=0

Earlier in this section, we indicated that a complete set of mutually orthogonal
comparisons fully accounts for the original sum of squares, We can illustrate this
property by adding together the sums of squares for comparisons 1 and 4 to show
that they sum to SS,. From Table 11-1, we see that

SScomp. 1 + SSecomp. « = 1176.00 + 18.00 = 1194.00

From our earlier calculations (see Table 10-2). we find that this sum is nx»o/%
equal to the SS,. What about other sets of comparisons? For comparisons 1 and

SRR ‘*"*%ﬁgﬁﬁwﬁﬁ

.

F 113 SINGLE-df COMPARISONS: THE MRC APPROACH 159

2, for example, the sum is .
SSuomp. 1 + SSeomp. 2 = 1176.00 + 18150 = 1357.50

which does not equal $S4. If you try any other set of comparisons, you will find
that none sums exactly to the value of 5SS, (1194.00).

What implications does orthogonality have for a researcher? Some authorities
suggest that all planned comparisons should be mutually orthogonal. One reason
commonly given for this recommendation is that orthogonal comparisons represent
an efficient use of an experimental design—a division of between-groups variability
into a tidy set of nonoverlapping sources of variability. Most authors of statistics
texts for behavioral scientists disagree with this recommendation, however. They
argue that orthogonality should not be a requirement of planned comparisons, In--
stead, they feel that the overriding considerations in selecting a set of planned com- -

- parisons are the following:

1. The set should be an integral part of the experimental design.

2. The comparisons should represent the primary purpose of the experiment.

3. The comparisons shonld oS.mann meaningful and direct tests of the re-
search hypotheses.

The entire set of comparisons we conducted on the data from the vocabulary ex-
periment (see Table 11-1) seems to satisfy these criteria, even though the com-
patisons are not mutually orthogonal. All four comparisons provide useful informa-
tion concerning the outcome of the experiment.

11.3 SINGLE-df COMPARISONS: THE MRC APPROACH

You may recall that in Chap. 10 we demonstrated the equivalency of MRC and
ANOVA by using contrast coding to represent the levels of the independent variable
and by using the R? to evaluate the omnibus null hypothesis. The purpose of this
section is to show how contrast-coded vectors can be used to conduct the same
sorts of single-df comparisons we considered with ANOVA in Sec. 11.2.

Contrast Coding

Contrast coding, you will remember, involves the assignment of values to the sub-
jects so that different comparisons between groups are represented by each vector.
For the overall analysis, the coding principle requires us to establish a — 1, or two,
vectors in our current example, to permit the calculation of the omnibus R
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In Chap. 8 we introduced decision rules that we could use to fix the probability
of a type 1 error at a for the omnibus test. If we apply these same rules to single-df
comparisons (like the comparisons that were the subject of Chap. 11), we in effect
fix the type [ error at  for each one of the statistical tests conducted in the analysis
of the experiment. The consequences of applying the rules to several tests at once
will be our concern in this chapter.

12.1 PROBLEMS ASSOCIATED WITH ANALYTICAL COMPARISONS

A serious problem exists whenever we perform more than one statistical test in the
analysis of any research or experiment: each comparison—whether planned or
post hoc—increases our chances of committing a type 1 error somewhere within
the entire analysis. In order to talk about this problem, it is convenient to introduce
two new terms, per comparison and familywise type I errors. We will now consider
how these two ways of conceptualizing type I error are related.

Per comparison (PC) type I error is the type I error associated with the signif-
icance level that we set for any given statistical test. In most cases, a researcher
would set the significance level at apc = .05 for all comparisons. What effect does
this decision have on type I error? If our focus is on the level of the individual
statistical test, we can say that the type I error is .05 for each one of the tests. But
suppose we consider a different point of reference, namely, the type I error for the
experiment as a whole, which includes the entire set of comparisons tested in the
analysis. If we do this, the separate per comparison probabilities actually combine
to produce a2 much larger value, which we will call the familywise (FW) type 1
error. This category of error, which has also been called the experimentwise type
1 error, refers to the probability (apy) that at least one type 1 error has been
committed somewhere among the various tests conducted in the analysis, If two
tests are conducted, for example, the familywise error will approximately equal the
sum of the two PC probabilities, namely, .10 (.05 + .05). If there are three tests,
e Will approximately equal .15 (.05 + .05 + .05).

The exact relationship between app and the number of statistical tests can
be determined by the following formula:

ey =1 = (1 — apg)® (12-1)

where ¢ represents the number of orthogonal comparisons that are conducted. With
the PC type 1 error set dpc = .05 and with ¢ = 3 orthogonal comparisons, for
example,

apw =1—(1—-.05)%=1—(95)%=1— 857 =.143
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The same basic relationship between FW error, on the one hand, and the number
of tests and PC error, on the other, holds for nonorthogonal comparisons as well, .
although the relationship is more complex. ’

Although researchers have known about the relationship expressed in Eq, -
(12-1) for some time, they still do not agree on what should be done about it. In
reality, each researcher must decide (and justify to others) the steps taken to
control FW error. What we hope you will extract from the present discussion is
an appreciation for the nature of the problem and an understanding of some of
the solutions that have been offered. This will better prepare You for determining
your own response to the problem of FW error.!

Possible solutions to the problem of controlling FW error are many, but all
reduce to the same mechanism, namely, a decrease in the size of the rejection region.
used to evaluate the significance of comparisons. Let us see how this general pro-
cedure works. As an example, suppose we planned to conduct five erthogonal
comparisons. We know from Eq. (12-1) that if we used ape = .05, the FW error
would be

app=1=—(1—.05)5=1—(95)° =1~ .774= 226

A relatively simple way of reducing FW error in this example would be to use a
smaller probability for apc—that is, a higher level of significance for evaluating
the individual comparisons. More specifically, consider what would happen to FW
if we use apc = .01 rather than .05 to assess the significance of each of these five
comparisons. Turning again to Eq. (12-1), we find the new familywise type I ervor
to be

g =1—(1—01)>=1—(99)°=1— 951 =.049

which, as you can see, apparently solves the problem of increased FW simply and
neatly! That is, familywise etror is now equivalent to the significance level adopted
by most researchers for omnibus statistical tests.

Before you become too complacent with this solution to the problem, you

- should realize that this control of FW error has been accomplished by increasing

the probability of another kind of error, namely, type If error. This “cost” for con-
trolling FW error can also be expressed as a loss of power. Let us consider this -
important point in more detail.

If we use the .01 level of significance rather than the .05 level to evaluate
comparison null hypotheses, we are able to reduce familywise error, as you have
seen. But as you can also see, this reduction is accomplished by the simple ex-
pedient of rejecting fewer null hypotheses. We control FW error by making it more

! You will find detailed discussions of the general problem in most advanced statistics texts.
For an elaboration of the views set forth in this section, see Keppel (1982, Chap. 8).
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difficult to reject null hypotheses; the fewer null hypotheses we reject, the lower
our FW error. This is exactly what we want to do when the null hypothesis is true,
of course. But the null hypothesis may also be false: some comparisons reflect real
differences in the population. Requiring a higher level of significance for these
comparisons directly increases type II exror, and by definition, decreases power.
The problem, then, is to find a way of balancing the two kinds of errors.

12.2 PLANNED COMPARISONS

Most recommendations concerning the control of familywise type I error distin-
guish between planned and post hoc comparisons. Recommendations for planned
comparisons usually do not include a correction for familywise error, except
perhaps, when the number of the planned comparisons exceeds some reasonable
value such as the degrees of freedom for the treatment sum of squares (see Keppel,
1982, pp. 147-150). This disregard for FW error is generally defended by the argu-
ment that planned comparisons typically constitute the primary purpose of a study,
and as such, they should be subjected to the most sensitive statistical test possible.
This type of test is one that treats each comparison as if the experiment were
specifically designed to focus on it. Any increase in FW error resulting from
the statistical assessment of planned comparisons is thus accepted as one of the
.calculated risks of experimentation.

12.3 POST HOC COMPARISONS

Most corrections for familywise error are applied to comparisons conducted after
the data have been initially examined and analyzed. Post hoc tests are treated
differently from planned comparisons becanse of their potentially large number
and because of their formitous, unplanned nature. When one is sifting through
a set of data in search of significant differences, considerably more comparisons
are examined and assessed than are ever proposed in the planning stage of an
experiment. Familywise type I exrror under these circumstances can be intolerably
high.

Recommendations for controlling FW error for post hoc comparisons depend
on the nature of the pool of differences being examined. We will consider three
common situations, in which the pool consists of (1) all possible comparisons,
(2) all possible differences between pairs of treatment means, and (3) all possible
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differences between a control condition and a number of experimental or treat-
ment conditions. The procedures are applicable to all single-factor experiments,
regardless of whether the F tests are conducted §m~ ANOVA or MRC. The logic
is the same.

All Possible nogv»mmcum ‘

When complex comparisons are included in the total pool of woﬁgn& compari-
sons—all the comparisons that'one might examine when combing through data—
the post hoc pool is often very large indeed, and a severe correction is usually re-
quired to keep FW error at a reasonable level The Scheffé test was designed for
exactly this type of situation (Scheffé, 1953). The test is simple to perform, All
we do is calculate a new critical value of F (Fg) to incorporate into the decision
rules, as follows:

Fs = (a — DF(dfy, dfs0) (22

where a equals the number of treatment conditions and F(df,, dfy;,) is the critical
value of F for the omnibus F test.? This value is found in Table A-1 with df,,,, = a — 1
and fyenem, = dfs;4. (Please note that df,., does not equal df,,,,.; the two are
often mistakenly equated in applications of the Scheffé test.) One’s choice of & at
this point determines the maximum value that oy will ever reach regardless of
the number of comparisons actually evaluated. It is this property that makes the
Scheifé test particularly attractive to researchers who are poring over large data
sets, searching for significant differences.

As an example of the calculations, consider again the four comparisons we
analyzed as EEE& comparisons in Chap. 11. We will weat them now as post
hoc comparisons and evaluate them by using the Scheffé test. For Eq. (12-2), we
need @ (a =3, in this example) and the critical value for the omnibus F test,
F(2,33) = 332 at a = .05. Substituting-in the formula, we find

=(3-1)(332) = (2)(332) =664

We would now use 6.64 as the critical value of F to test the significance of these

(and any other) comparisons we conduct, whether with ANOVA or with MRC.
As we have noted already, the Scheffé test guarantees that the FW error will

be no greater than the value of & used to enter the F table (.05 in this case), no

matter how many comparisons are conducted. An inspection of the Fromp.'s in
either Table 11-1 or Table 114 indicates that the comparison between the two

2 In MRC terminology, df, = k (the number of vectors required for the omnibus R?) and
dfy;s =N — k — 1 (the degrees of freedom for the residual sum of squares).
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science conditions would still be significant under the Scheffé test. You should
realize, of course, that only the largest differences will emerge triumphant from an
application of the Scheffé test. One way to make this point is to compare the value
of Fg (6.64) with the value of the uncorrected F we would use for planned com-
parisons (F = 4.17). Comparisons producing F,,,,.’s that fall between these two
critical values would be declared significant if they were planned comparisons and
not significant if they were post hoc comparisons subjected to the Scheffé correction.

In summary, the Scheffé test provides protection from FW type I error when
a researcher hopes to discover interesting, but still unexpected, differences between
treatment conditions and combinations of treatment conditions. Since the total
pool of such comparisons is relatively large, so must be the correction required to
restore the FW rate to reasonable levels. As we have already noted, however, the
“cost” of this protection is a considerable loss in the power to detect real treatment
differences. This loss of power may be substantially reduced if something can be
done to restrict the size of the comparison pool examined by a researcher. A
smaller pool requires a smaller reduction in the apc to exercise the desired control
over FW error. We will next consider two procedures that capitalize on this strategy
of restricting one’s attention to certain smaller and better-defined subsets of
comparisons.

All Possible Differences between Pairs of Means

One obvious way of reducing the pool of post hoc comparisons is to concentrate
on the differences between pairs of treatment means and simply not consider com-
plex comparisons in the post hoc analysis. To see how this reduces the number
of comparisons, let us consider several examples: if a = 3, for instance, the total
pool contains a combination of 6 pairwise and complex comparisons, while the
smaller pool consists of 3 pairwise comparisons; if 4 = 4, the total pool contains
25 comparisons, while the smaller pool contains 6; and finally, if a = 5, the total
pool contains 90 comparisons, while the smaller pool contains 10. Because of the
difference in the size of these two pools, apc requires a smaller adjustment for
pairwise comparisons than it requires when the pool contains both pairwise and
complex comparisons. One test that provides control over the smaller pool of dif-
ferences is called the Tukey test (Tukey, 1953).

The Tukey test is most easily performed by calculating the differences between
all pairs of means and comparing them against a minimum, or critical, difference
that must be exceeded for an observed difference to be declared significant. This
critical value dy is given by the formula

z _ GrMSg4
S

(12-3)
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where qr = an entry in a special table, called the studentized range statistic (Table
A-2)
MSs;4 = the error term from the overall analysis of variance
s = the sample size of the treatment groups
Using the data from our example to illustrate the Tukey test, we first find
the three differences, namely,
¥, — Y4, = 40.00 — 26.00 = 14.00
Y, — ¥, = 4000 — 3450 = 550
¥,, — ¥, = 26.00 — 3450 = —8.50
Next, we calculate the critical difference dy by using Eq. (12-3). The value for g7,
which is required by the formula, is found by entering Table A-2 and coordinating
three quantities, dfz,,., (the df associated with the MSg,,), k (the number of treat-
ment means——a in this design), and agy (the FW error rate chosen for the Tukey
test). Using dfy,, = 30 (since df,,,,, = 33 does not appear in the table), k =3,

and oy = .05, we find g = 3.49. Substituting this and the other required values
(MSs;4 = 13936 and s = 12) in Eq. (12-3), we find

1 - 84913936 4122
T J12 T 346

= 1191

A comparison of the three observed differences against the new criterion, dy =
11.91, indicates that only the difference between the physical science and social
science groups (14.00) is significant.

Under some circumstances, you may wish to conduct the Tukey test in the
same way we performed the Scheff? test, namely, in conjunction with the F statistic.
This method is ideally suited for analysis by MRC, where the computer output for
these comparisons is expressed in terms of zero-order correlations from which F
ratios can be formed. The new critical value of F required by the Tukey test (Fy) |
is given by
L A&N.v 2

> (124)

Fy

In the present case,
_349%
==

Fr 609

The Tukey test is conducted by :.A:.m Fr = 6.09 as the criterion for evaluating the
Foomp.'s. An inspection of Tables 11-1 and 11-4, where these statistical analyses are
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summarized, permits the same conclusion, namely, that only the difference be-
tween physical science and social science is significant.

It is instructive to compare the critical values of F for the Scheffé and the
Tukey tests. With this example, the critical value of F was slightly greater for the
Scheffé test (6.64) than that required by the Tukey test (6.09). The difference
between these two critical values increases as the number of treatment conditions
in an experiment increases.

All Possible Comparisons between a Control
and Several Treatment Conditions

A final type of situation involves an even smaller pool of potential comparisons—
an experiment in which one condition, usually a control or baseline condition of
some sort, is compared against a number of experimental or treatment conditions.
As you would suspect, the degree to which this restricted comparison pool is
smaller than the other pools increases directly with the scope of the experiment.
To illustrate, if = 3, then 2 of the 3 pairwise comparisons represent differences
between the control and the two experimental conditions; if 4 = 4, the numbers
are 3 out of 6; and if @ = 5, they are 4 out of 10. Because the comparisons involved
are fewer than those considered by either the Scheffé test or the Tukey test, the
correction for FW error will not be as severe as that given by either of those tests.
The test developed for this type of situation is known as the Dunnett test (Dunnett,
1955).

Like the Tukey test, the Dunnett test is most simply conducted by comparing
the differences between the control and experimental means against a critical dif-
ference that must be exceeded to be significant at the chosen dyy, level. The for-
mula for calculating this difference (d,) is

= §<N§u§
btlﬂl.

where gp is an entry in Table A-3 of Appendix A and the other quantities are

12-5)

familiar to you. The value of g;, is determined by the total number of conditions -

(k) involved in the analysis, the degrees of freedom associated with the error term
(dfs;), and the value chosen for FW error (ogw).?

3 The values of g, given in the first part of Table A-3 are for situations in which researchers
are interested in the possibility of positive as well 4s negative differences between the control
and experimental conditions (called Two-Tailed Comparisons). A special table is available
for the less common situation in which researchers are concerned only with differences in
“one direction"—that is, either positivé ‘or negative differences, not both. This other table
is included in Table A-3 as One-Tailed Comparisons.
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We will calculate dj, using the example from the last section. To find qp, we
look for the entry in Table A-3 at k = 3, df e = 30, and oy = .05. This value
is 2.32. Substituting in Eq. (12-5), we find'

5 _ 232)4/(2)(13936) 3872

% Ji2 T 346

As expected, this citical difference is slightly smaller than that required for the
Tukey test performed on the same data (dy = 11.91).
If you wish to work with the F test, you can use

Fp = (gp)? (12-6)

as the critical value with which to evaluate F,,, . In the present case,

=11.19.

Fp=2322=538

This critical value can be compared with corresponding valies for the Scheffé test

(6.64) and the Tukey test (6.09) to illustrate the different sensitivities of the three

tests.

12.4 THE FISHER TEST
An entirely &mm.n:ﬁ approach to the problem of FW type I error is the protected
least significant difference test, which we will call the Fisher test (Fisher, 1949).
The test centers on the outcome of the omnibus F test; the significance or nonsignif-
icance of this test determines whether additional tests will be conducted at all. If

the F is significant, comparisons are evaluated without correction for FW error; if -

the F is not significant, no further tests are conducted.

The Fisher test is most appropriate in situations in which initially, at least,
all treatments are given equal consideration, that is, there are no favored treatments
or anticipated outcomes—in short, where there are no planned comparisons as
we have defined them. An example would be an experiment comparing consumer
preferences among alternative ways of packaging a certain product. The object of
the study is to discover whether the different package designs make any difference
to the potential consumer. This is where the omnibus F test comes into play: it
assesses the average differences associated with the treatment conditions. Only if
the overall null hypothesis is rejected does the investigator examine the specific
differences between conditions to find out which are the best and which are the
worst. ’
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Familywise type I error is controlled indirectly by the Fisher test. The omnibus
F test acts as a “filter,” which permits additional tests only when the evidence
looks “good”~—that is, when treatment differences are sufficiently large not to be
reasonably attributed to the operation of chance factors. Although it is true that
a researcher will sometimes falsely conclude that differences are present in the
population when in fact they are not, this does not happen very often (only 5 per-
cent of the time when & = .05). Thus, little long-term risk is incurred by following
the Fisher procedure. The Fisher test has been studied by statisticians and shown
to offer an excellent balancing of type 1 and type I errors (see Carmer & Swanson,
1973). We do not suggest its use with studies in which planned comparisons are
also present, for reasons that have been expressed elsewhere (Keppel, 1982, pp.
158-159).

12.5 RECOMMENDATIONS AND COMMENT

We recommend that planned comparisons be evaluated without undue concern
for their effect on familywise type I error. Furthermore, we recommend that planned
comparisons be the strategy for research. However, if there is no reason or it is
not feasible to conduct planned comparisons, then post hoc comparisons are the
alternative. But most researchers become concerned at this point with the greatly
increased potential for familywise error associated with post hoc comparisons and
adopt some strategy for dealing with it. We have described three techniques which
have been developed to correct FW error for different pools of possible com-
parisons. If a mixture of complex comparisons and differences between pairs of
means are candidates for post hoc tests, we recommend the Scheffé test. On the
other hand, if only pairwise differences are of interest, we recommend the Tukey
test. We recommend the Dunnett test when only differences between a control
and experimental conditions are involved. The Fisher test seems most appropriate
for situations in which planned comparisons are not an integral part of the
experimental design.

These recommendations are summarized as a flowchart in Fig. 12-1. We begin
at the top with the question “Do you have planned comparisons?” Your answer to
this question branches to additional questions and finally to the appropriate set
of procedures. If you answer yes, for example, you perform the planned compari-
sons without undertaking any correction for FW error; if you wish to follow these
with additional post hoc comparisons, you would select one of the correction
procedures we have discussed—Scheffé, Tukey, or Dunnett—depending on the
nature of the comparisons you have selected to examine. On the other hand, if you
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S

Do you have planned
i comparisons?
Yes No
Conduct single-df ‘Will you use the
comparisons without Fisher test?
correction for FW error
Yes No
Yes | s the omnit Are you interested in
No F test significant? | any complex comparisons? |
Stop
No Yes
Do your comparisons | Use the Scheffé
consist of a single Test
group versus all others?
Yes | No
Use the Dunneat Use the Tukey
test test

Figure 12-1 Schematic representation of post hoc technicues.

answer no to the Ennw/naﬁnou. you may perform either the Fisher test or one of
the three alternative post hoc tests. These possibilities are presented at the bottom
of the flowchart. ) : .
Any correction for FW error disregards another important concern of re-
searchers, namely, type 1l error, or the loss of power created whenever an FW
correction is incorporated into the evaluation process. A constructive suggestion
for dealing with this problem is to expand the usual decision rules in which we
either reject or do not reject a null hypothesis to include a third course of action,
the opportunity to suspend judgment. That is, suppose we decided to reject the null
hypothesis only when the F,,,,. exceeds the familywise criterion but to make no
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decision—that is, to suspend judgment—when an F,,,,. happens to fall between
the criterion for planned comparisons and the familywise criterion. To be more
explicit, consider the following modified decisions rules:

e

¥ Fopeereea 2 Frw, reject Hy,
B F,p,0rvea < Fpc, do not reject Hy,

If Fypservea falls between Fp and Fpy, suspend judgment.

The first of the decision rules concerns the familywise criterion; an F,y,.,es that
exceeds this critical value (Fry) will be rejected without question. The second
rule concerns the “normal” per comparison criterion applied to uncorrected planned
compatisons; an F,,,...s that falls short of this critical value (Fpc) will not be
rejected. The final rule pertains to our decision when the F,;,,. falls between
these two critical values——we suspend judgment. We apply this third rule when
we come across an unexpected finding which, if it were the result of a planned
comparison, we would have termed significant; we suspend judgment rather than
commit a promising finding to potential obscurity by labeling it “not significant”
under the more stringent FW criterion.*

12.6 SUMMARY

One consequence of assessing a number of single-df comparisons is an increase
in the probability of committing type I errors during the course of the entire
analysis. This probability, which is known as familywise type I error, increases di-
rectly with the number of statistical tests performed, whether they are planned
tests or not. Researchers tend to ignore familywise error when doing planned com-
parisons, however, but usually adopt some way of reducing it with unplanned
comparisons. We discussed several techniques that can be used with different types
of comparisons. The Scheffé test is used when the pool of possible single-df com-
parisons consists of all pairwise and complex comparisons. The Tukey test is used
when the pool consists of all pairwise comparisons. The Dunnett test is used when
a single control condition is compared with a number of treatment conditions,
The Fisher test, which focuses on the outcome of the omnibus F test, is recom-
mended for situations in which there are no planned comparisons motivating the
research. Finally, we reiterate that the above concerns are related to the number
of comparisons undertaken and not to whether the analytical strategy one adopts
is ANOVA or MRC.

4 This suggestion is developed more fully in Keppel (1982, pp. 162-164).
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12.7 EXERCISES

1. The experiment described in Problem 1 of Chap. 10 consisted of three
conditions, praise for correct responses (“praise”), reproof for mistakes (“reproof”),
and no verbal comment at all (“none”). For the questions below, assume that you
had no planned comparisons when you designed the experiment. What procedure
for controlling FW error (Dunmett, Scheff¢, or Tukey) is most appropriate under
the following circumstances?

All possible comparisons between pairs of means
. Comparisons between each of the two “verbal” conditions and the condition

receiving no verbal comment
c. A comparison between “none” and the combined conditions receiving
verbal comment of some sort and a comparison of the two verbal

conditions

5P

2. Using the data from Problem 1 of Chap. 10,

. Conduct a Tukey test.
. Conduct a Dunnett test.
. ‘What is the critical value for a Scheffé test?

Toe

e
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You have seen how a single-factor experiment can be analyzed to yield information
concerning a number of research hypotheses. If the manipulation is qualitative in
nature, the analysis generally takes the form of assessing miniature two-group
“experiments.” On the other hand, if the manipulation is quantitative in nature,
the analysis usually consists of the examination and assessment of trend com-
ponents presumed to underlie the relationship between the independent and de-
pendent variables. (We consider trend analysis in Chap. 23.) In either case, the
experimental manipulation is conceived as a single independent variable—a varia-
tion either in the type or in the amount of the independent variable.

We will examine a different kind of design in this chapter, one in which two
independent variables (factor A and factor B) are manipulated simuitaneously within
the context of the same experiment. This type of design, known as the factorial
design, is quite common in the behavioral sciences, for the important reason that
it greatly expands the sorts of questions one can study in an experiment. In this
chapter, we will consider the nature of the overall analysis of a two-factor design
and show how the analysis is accomplished by ANOVA and MRC. In Chaps. 14
and 15, we will turn our attention to the detailed analysis of the factorial experi-
ment.

13.1 THE OVERALL ANALYSIS

Suppose our experiment comparing the relative merits of teaching vocabulary
words in the context of three different types of lectures (factor A) is expanded to
include a second independent variable, mode of presentation (factor B). More spec-
ifically, suppose we are comparing computer-assisted instruction with a “standard”
method of presentation (a lecture given by a teacher). A factorial design combines
the two independent variables in such a way that all possible combinations of the
levels of the two variables are represented in the experiment. In the present case,
this would mean that different groups of students would receive lectures on phys-
ical science, social science, and history, under each of the two methods of presenta-
tion, computer or standard, and thus there would be a total of 3 x 2 = 6 treatment
conditions. . :

This arrangement is diagramed in Table 13-1, where you can see the exact
nature of the design. Each cell represents a different treatment condition of the
experiment formed by a unique combination of the levels of the two independent
variables. In a completely randomized factorial experiment, which is the kind of
experiment we are considering in this chapter, subjects are assigned randomly to
the different treatment conditions. Typically, each group is represented by an equal
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Table 13-1
An Example of a Two-Factor Design

Method of Type of Lecture (Factor A)

Presentation Physical Social History
(Factor B) Science (a;) | Science (a;) (a3)

Computer (by)
Standard (b,)

number of subjects (s). (Factorial experiments with unequal sample sizes are
discussed in Chap. 24.)

Factorial experiments are usually described in terms of the number of levels
associated with the two independent variables. The present example would be
called a completely randomized 3 x 2 (“three-by-two”) factorial design, which clearly
specifies the fact that two independent variables have been manipulated factorially,
one with three levels and the other with two levels, and that the total number of
treatment conditions is six. By completely randomized we mean that individual
subjects are randomly assigned to only one of the treatment combinations; in other
types of designs subjects may each receive more than one treatment combination.

Let us now fill in the data for this example. In the upper portion of Table
13-2, we present vocabulary scores for all the sets of s = 6 subjects constituting
the different treatment groups. (These data are derived from Table 10-1; the first
six scores for each lesson have become the “computed-assisted” scores, and the
remaining six scores are the “standard” scores.) The means of the groups are listed
in the lower portion of the table in what we will call a factorial matrix.

You will notice that the two “margins” of the matrix contain the averages of
the means in the individual columns (the column marginal means) and in the
individual rows (the row marginal means). The marginal means can be thought
of as the results of two “artificial” single-factor experiments, one in which the
independent variable is the type of lecture (the column marginal means, 40.00,
26.00, and 34.50) and another in which the independent variable is the method
of presentation (the row marginal means, 41.33 and 25.67). These average effects
are artificial in the sense that they are not the product of an actual single-factor
design in which only one independent variable is manipulated, but rather are the
effects produced by averaging or “collapsing” over the levels of the other inde-
pendent variable manipulated in the factorial experiment

ot
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Table 13-2
Numerical Example
Vocabulary Scores
Physical Science Social Science History
Computer Standard Computer Standard Computer Standard
53 44 47 13 45 46
49 48 42 16 41 40
47 35 39 16 38 29
42 18 37 10 36 21
51 32 42 11 35 30
w03 s BN
Sum: 276 204 240 72 228 186
Mean: 46.00 34.00 40.00 12.00 38.00 31.00

Matrix of Means

Method of Type of Lecture (Factor A)
Presentation Physical Social . History
(Factor B) Science (a,) Science (a,) (ay) Average
Computer (b,) 46.00 40.00 38.00 41.33
Standard (b,) 34.00 12.00 31.00 | 25.67
Average 40.00 26.00 34.50

These two sets of average effects are called the main effects of the two vari-
ables. The term main effect is not to be interpreted to mean “primary” or “impor-
tant.” Whether main effects are of any systematic interest to a researcher depends
primarily on the joint influence of the two variables, which is revealed by an
examination of the means within the bodyof the factorial matrix.

Consider, for example, the three means in the first row of the matrix (46.00,
40.00, and 38.00). These means reflect the effects of the three lectures for those
students receiving the computer presentation. They show that the group receiving
the lecture on physical science has surpassed the group receiving the lecture on
social science by 6.00 words (46.00 — 40.00) and the group receiving the lecture
on history by 8.00 words (46.00 — 38.00), and that social science has surpassed
history by 2.00 words (40.00 — 38.00).
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‘What about the corresponding manipulation under the standard presentation?
The three means in the second row (34.00, 12.00, and 31.00) show a stiking
change in the effects of the three types of lecture, namely, a very substantially in-
creased difference between physical science and social science (34.00 — 12.00 =
22.00 words) and a somewhat reduced difference between physical science and
history (34.00 — 31.00 = 3.00 words). The difference between social science and

history actually shows a reversal for the two methods of presentation, namely, a .

marked inferiority for social science with the standard presentation (a difference
of 19.00 words) as opposed to the small superiority (2.00 words) found with the
computer presentation. It appeats, then, that the type of lecture produces differ-
ent results with the two methods of presentation. It is for. this reason, therefore,
that the average effects of the type of lecture—reflected by the column marginal
means—represent a distorted picture of the results of the actual factorial experi-
ment revealed by the two'sets of row means within the body of the matrix.

We reach a similar conclusion if we consider the difference between the two
methods of presentation. While we find the computer method to be superior when
we examine the row marginal means (41.33 — 25,67 = 15.66 words), the mag-
nitude of the difference depends on the type of lecture. This is easily seen if we
examine the pairs of row means column by column, within the body of the fac-
torial matrix. More specifically, for physical science the difference is 12.00 words
(46.00 — 34.00), for social science it is 28.00 words (40.00 — 12.00), and for
history it is 7.00 words (38.00 — 31.00). Again, we see that the main effect of an
independent variable is not representative of the results of the actual factorial
experiment.

This type of sitnation—in which the effects of one of the independent variables
depend on the levels of the other independent variable—is called interaction.
Stated another way,

Interaction is present when the pattern of differences associated with
cither one of the independent variables changes as a function of the
levels of the other independent variable.

When this happens, the main effects do not yield a faithful picture of the results
of a factorial experiment. You should note that this definition of interaction is
technically correct only for population treatment means, In an actual experiment,
which is assumed to be drawn randomly from these populations, the presence or
absence of interaction is assessed by an F test designed for that purpose. We will
discuss this statistical test shortly.

The way in which interactions operate can be seen by examining 2 x 2
designs. For example, suppose we have the following 2 x 2 layout with the cells

iy
i
g

b
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labeled as shown:
A
a; a
B by | m K2
b, H3 Ha

Interaction is present when the effects of one independent variable depend on the
levels of the other independent variable. Thus, an interaction is present when the
difference between cell means p, and -,, which represents the effect of factor A
at one level of factor B (level by ), does not equal the difference between cell means
5 and i, which represents the effect of factor A at the other level of factor B
(level b,). That is,

An interaction is present when g, — 4, # J3 — Ha

(Again, as a reminder, the issue of “presence” or “absence” will be determined by
an appropriate statistical test to account for differences that are due to chance.)
Alternatively, we can define interaction in terms of the other independent variable:
an interaction is present when the difference between cell means y, and g3 (the
effect of factor B at level a,) does not equal the difference between cell means
and p, (the effect of factor B at level a,). That is,

An interaction is present when p; — jg # iy — Hs

Finally, another way of considering interaction is to look at the cell means on the
diagonals of the 2 x 2 matrix. In this case, interaction is present when the sum
of the cell means on one diagonal is not equal to the sum of the cell means on
the other diagonal. That is, .

An interaction is present when u; + g, # f; + i3

All three ways of expressing interaction in a 2 X 2 matrix are equivalent.

Factorial designs and the assessment of interaction are valuable to any scien-
tific enterprise, since they reveal how independent variables combine to influence
behavior. More complex factorials in which three or more independent variables
are manipulated yield extensive information on the interaction of independent
variables. Ultimately, factorial designs can be used to provide a comprehensive
picture of the behavior under study.

It is instructive to consider an example in which interaction is entirely absent.
Consider the matrix of means in Table 13-3. First, you should note that we have
chosen numbers for this example to duplicate exactly the two sets of marginal
means from Table 13-2. What has changed in this example is the means within
the matrix. Consider the pattern of differences revealed by the rpws in Table 13-3;
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Table 13-3
An Example of No Interaction

Method of Type of Lecture (Factor A)

Presentation Physical Social.  History

(Factor B) Science (4;) Science (a;) (a3) | Average
Computer (by) 47.83 33.83 4233 4133
Standard (b,) 3217 18.17 2667 | 25.67
Average 40.00 ©26.00 34.50

for example, between the means for physical science and social science, exactly
the same difference is found for the marginal means (40.00 —~ 26.00 = 14.00 words)
as for the computer presentation (47.83 — 33.83 = 14.00) and the standard pre-
sentation (32.17 — 18.17 = 14.00). Similarly, the difference between the marginal
means for physical science and history (40.00 — 34.50 = 5.50) is identical to the
difference found between means for the computer presentation (47.83 — 4233)
and for the standard presentation (32.17 — 26.67). We find the same outcome
if we examine the other independent variable. That is, the difference between
the marginal means for computer and standard presentations is 41.33 — 25.67 =
15.66, and exactly the same difference is found for all three lectures (47.83 —32.17,
33.83 — 18.17, and 4233 — 26.67). .

It is obvious in this case that the effects of the two independent variables, as
reflected by the actual treatment means, are perfectly reflected in the marginal
means, and that there is no interaction. In the case where interaction is absent,
then, the influence of either variable is not dependent on the levels of the other.

The presence or absence of interaction is also effectively revealed by the kind
of pictorial representation of the outcome of an experiment found in Fig. 13-1.
The six treatment means from the original example (Table 13-2) are plotted in
Fig. 13-1(a), while those from the second example (Table 13-3) are plotted in
Fig. 13-1 (b).! In each part of Fig. 13-1, the means for the levels of factor B are
connected by separate lines. In such a graphic representation, interaction will be
revealed by the presence of nonparallel lines, as in Fig. 13-1(a), while the absence
of interaction results in parallel lines, as in Fig. 13-1(b). We will now turn to the
statistical assessment of interaction (and of main effects), first by ANOVA and
then by MRC.

1 For convenience, we have treated factor A as a continuous independent variable, which of
course it is not. This method of plotting data is commonly used by researchers, however,
as it reveals the presence (or absence) of interaction quite clearly. ‘
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Figure 13-1 Two possible outcomes of the factorial experiment. (a) Graph displaying.

an interaction between the two independent variables. (b) Graph indicating that there is no
interaction.

13.2 THE FACTORIAL ANALYSIS: THE ANOVA APPROACH

The analysis of variance is based on a partitioning of the total sum of squares into
a number of component sums of squares, each of which reflects useful sources. of
variation. We will begin by describing these sources; as in the single-factor design,
they may be expressed quite simply as deviations from means.
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4 Sources of Variability
For the single-factor design, the deviation of each observation Y from the grand
¥: mean ¥; was divided into two portions: the deviation of the observation from the
[ relevant treatment mean ¥, and the deviation of that treatment mean from the
grand mean. In symbols,

*'ﬂﬂ." ANIW&V + Aﬂilmﬂﬂv

You will recall that the first deviation to the right of the equal sign formed the
basis for the within-groups sum of squares, and the second mnSnﬂoF the ‘basis
for the between-groups sum of squares.

We use analogous partitioning of the deviations with the two-factor design.
The total deviation may again be divided into the deviation of each observation Y
from the relevant treatment mean—in the two-factor design, ¥, which represents
the mean for a combination of levels of the two independent variables—and the
deviation of this treatment mean from the grand mean. In symbols,

Y-Tr=0 -V, + Fp—¥p)

As in the single-factor design, these two components form the basis for the 8—95.
groups and between-groups sums of squares, respectively. The within-groups sum
of squares, which continues to reflect unsystematic variability—the uncontrolled

. variability of subjects treated alike—will be used to form the error term in the

analysis of variance. The between-groups sum of squares, on the other hand, re-
flects several sources of systematic variability, which we will now isolate by further

<4 . partitioning,

In Sec. 13.1 we indicated that these sources of variability are the main or aver-
age effects of the two independent variables and the effects of interaction between
the variables. For the two main effects, the deviations involve the relevant column
and row marginal means, namely,

¥,-%, md -

for A and B, respectively. The deviation representing interaction is derived from
the deviations we have already specified. Interaction may be viewed as the variability
between groups that is not attributed to either of the two main effects. Thus, the

. interaction deviation is given by

Fp— V) = =¥~ T~ Tp
which simplifies to-
Y—Y, T+
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when we remove the parentheses and cancel out two of the grand means. To
summarize, the deviation of each observation from the grand mean may be divided
into four components: a within-groups deviation, and deviations attributed to the
main effects of A and B and to the A x B interaction; in symbols,

Y-Yr=0-T) + -+ G-I+ -T-H+T) @

If the partitioning specified in Eq. (13-1) is accomplished for each observa-
tion and the deviations are squared and summed, the relationship between the
components may be expressed in terms of sums of squares;

SSr = SSsi48 + 5S4 + SSp + SS4xp (13-2)

Note that the within-groups sum of squares is designated by the subscript S/AB,
which clearly specifies the nature of this sum of squares—the variability of
subjects within their treatment groups.? Qur next step is to examine the com-
putational formulas for calculating these sums of squares.

Computational Formulas

You will recall from Chap. 6 that sums of squares based on particular deviations
are easily formed by combining certain basic ratios in patterns that reflect the
components of those deviations (see Sec. 6.2, under “Basic Ratios”). We will use
Eq. (13-1) to perform a similar function for the present design.

Notation. Lowercase letters are used to designate certain numbers relevant to a
specific experiment:

a = the number of levels of factor A.
b = the number of levels of factor B.
- s = the sample size (the number of subjects randomly assigned to each of
the different combinations of the levels of the two independent variables).

We will refer to specific levels of independent variables and combinations of
levels with lowercase letters and numerical subscripts. Levels of factor A will be
designated a,, a,, etc., while levels of factor B will be designated b,, b,, etc. Specific
treatment combinations are designated by the appropriate levels of the two vari-
ables. For example, a;b, refers to the treatment group receiving level a, in
conjunction with level b,, and a,b, to the pairing of levels a, and b,.

2 As in the single-factor design, the SS5, .5 consists of the variability of subjects treated alike,
pooled over all of the treatment groups. There are six treatment groups in the present ex-
ample, which means that SSg;,5 is the sum of the six within-group sums of squares.
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All the necessary calculations involve various sums and subtotals, which we

. will represent with capital letters:

Y = the individual observation or score. .

AB = the subtotal for any one of the treatment groups; when needed, sub-
scripts are used to specify the particular levels of the two factors a given
group has received. For example, (4B), ; = the sum of the scores for
subjects receiving the combination of levels a; and b,, and (4B), ,, the
sum associated with the combination of levels a, and b,.

A = the sum of all the AB sums for a particular level of factor A. Subscripts,
again, may be used to designate specific levels.

B = the analogous sum for factor B.

T = the grand sum of the scores.

The Preliminary Analysis. The first step in the analysis usually consists of sum-
ming the Y scores and their squared values for each of the (a)(b) treatment groups
or combinations. The two resulting sets of sums may be used to calculate the usual
descriptive statistics, the group means and the standard deviations. In addition,

‘the two sets of sums are used to calculate the basic ratios entering into the cal-

culation of the factorial sums of squares. The first set (the AB sums) are entered
into a special matrix used to facilitate the calculation of basic ratios, while the
second set (the sum of the squared Y scores) are simply combined to form one
of the basic ratios required to calculate S5, and SSr.

The AB Matrix. We continue the analysis by entering the AB treatment sums
according to the levels of the two independent variables into what we call an AB
matrix. An AB matrix based on the sums from Table 13-2 is presented in Table
13-4. The column marginal totals (4) are formed by adding the AB sums within
the individual columns of the matrix, and the row marginal totals (B) are similarly

Table 13-4
AB Matrix of Sums

ay a, a; |Sum

b, |276 240 228 | 744
b, |204 72 186 | 462

Sum | 480 312 414 1206
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Table 13-5
Basic Ratios and Analysis Summary

Basic Ratios
[¥1=Z¥2=53% + 492 4 -+ - 4 30% + 20% = 46,194
I (AB)? 2767 +204% +--- + 2282 + 186% 267,156

[AB} = = = = 44,526.00
s 6 6
X A% 480% + 3122 + 414 499140
Al = - = —"— = 41595.00
“l ) (s) 2)(6) 12
I B*  744% + 4622 766980
= = =2 = 42610.00
(=} €a) (s) 3)(©) 18
T2 1206> 1454436
T] = = 40,401.00
S P RO 4010
Summary of the Analysis
Source ss daf MsS F
A [l — [1] = 1194.00 2 597.00 10.74*
B [B] — [T} = 2209.00 1 220900 | 39.73*
AxB [AB] — [A] — [B} + [T] = 722.00 2 361.00 6.49*
S/AB [Y] - [AB] = 1668.00 30 55.60
Total [Y] — (1] = 5793.00 35
*p < 0L

formed within the rows. The grand total T is obtained by summing either set of
marginal totals. We are now ready to calculate the basic ratios.

Basic Ratios. Formulas for the five required basic ratios, of which four are based
on the sums appearing in the AB matrix and the fifth on the individual Y scores,
are presented in the upper portion of Table 13-5. The first basic ratio we will con-
sider is simply the sum of all of the squared scores. The formula for this ratio and
the expansion based on the data from Table 13-2 are presented in the first row
of the table.

The other basic ratios are based on the different sets of sums appearing in
the AB marrix. In all cases, the numerator is formed by squaring the entire set of
relevant sums (either AB, 4, B, or T) and then summing the squares. In symbols,
the numerators are:

3 (AB)?, T A%, IB?, T*
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Fach denominator consists of the number of observations contributing to ﬁn
§: scquared terms in the corresponding numerator:

s for the basic ratio based on the AB sums

(b) (s) for the basic ratio based on the A sums

(a) (s) for the basic ratio based on the B sums \-
(a) (b) (s) for the basic ratio based on T :

G&n denominator for the basic ratio, which is based on the individual scores, Y,
is 1 and does not need to be m@oo&o&

The completed ratios and relevant calculations performed on the data from
the numerical example are found in the remaining rows of the upper portion of
Table 13-5. For convenience, each ratio is uniquely coded in order to simplify
computational formulas for the different sums of squares.

Sums of Squares. The computational formulas for the sums of squares, which
are presented in the bottom portion of Table 13-5, are specified in terms of the
basic ratios. You will note that the patterns of combination are identical to the
patterns of the components of the deviations upon which the sums of squares are
based; see Eq. (13-1). The results of the operations are given in the column Iabeled
SS. As an arithmetic check, you should verify that the sum of the component sums
of squares equals the total sum of squares:

SS7 =554+ SS5 + SSxp + SSsjun
= 1194.00 + 2209.00 + 722.00 + 1668.00
= 5793.00

The Analysis om<§no

The final steps in the n&n&mnouu consist of determining the degrees of freedom
for each source, calculating the mean squares, and forming the three F ratios for )
the effects analyzed. These steps are summarized in the remaining columns of the
table.

Degrees of Freedom. The degrees of freedom for any main effect are simply the
number of levels for each factor less 1. In this case,

dfy=a—1=3-1=2
dfg=b—1=2-1=1

The degrees of freedom for the A x B interaction are found by multiplying the
df’s for the two main effects. That is,

dfyxp = {dfJdfp) = D Q) =2
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The degrees of freedom for the within-groups source (dfs,3) are found by pooling
the df’s for all the treatment groups. The degrees of freedom for any one group
are s — 1. Since there are (a) (b) groups,
Ysap= @B -1
=3))(6-1) = (6)(5) =30
Finally, the degrees of freedom for SSy are 1 less than the total number of obser-
vations, (a)(b) (s); in symbols
dfy = (@) — 1
=3)(22)(6) ~1=36—-1=35

As a check, dfy should equal the sum of the component df’s:

dfr = dfy + dfs + dfyup + dfsus
=24+1+2+4+30=35

Mean Squares and F Ratios. Any mean square is calculated by dividing 2 sum
of squares by its degrees of freedom. The mean squares for the analysis' are pre-
sented in Table 13-5. The Fratios are found by dividing the mean squares represen-
ting the factorial effects of interest by the within-groups mean square:

F= Eﬁ\%:n»

The F ratios for the two main effects and for the interaction are listed in the last
column of the table.

The statistical hypotheses underlying the F tests are pairs of null and alterna-
tive hypotheses. For the main effects, the null hypothesis states that the population
treatment means corresponding to the separate main effects are the same; the
alternative hypothesis states that they are not all equal. For the interaction, the
null hypothesis states that interaction effects are completely absent in the popula-
tion; the alternative hypothesis states that they are not.

The logic behind these F tests is the same as that described for the single-
factor design. Each numerator provides a population estimate of one of the three
factorial effects plus error variance, while the denominator provides an estimate of
error variance alone. Under the null hypothesis, both numerator and denominator
mean squares reflect error variance and the expected value of each of the three F
ratios is approximately 1.0. A significant F indicates that the null hypothesis is
untenable and that we should accept the alternative hypothesis that a particular
factorial effect—A main effect, B main effect, or interaction—is present.
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We evaluate each null hypothesis by comparing the value of F we calculate
and the critical value found in Table A-1, which, as usual, is determined by the
df's associated with the numerator and denominator terms and the significance
level chosen for the statistical tests. At « = .05, the critical value for the A main

£ .ffect and the A x B interaction is F(2,30) = 3.32 and that for the B main effect
s F(1,30) = 4.17. An inspection of values in Table 13-5 indicates that all three
¥ factorial effects are significant. This means that:

1. There are differences overall among the three types-of lecture.

2. There are differences overall between the two methods of-presentation.

3. The differences among the three types of lecture depend on the method
of presentation. .

13.3 THE FACTORIAL ANALYSIS: THE Zuwﬁ. APPROACH

The identical statistical outcomes found with ANOVA for the two-factor design
can be obtained with MRC. The researcher’s critical step is in establishing vectors
that capture the varigtion in Y that is of specific interest. The sources of this
variation are, of course, the same sources that we normally isolate and study in an
analysis of variance. We will consider the coding process first and then show how
the factorial effects may be evaluated with MRC.

Coding of Vectors

Contrast coding is easily adapted to the analysis of a factorial experiment. The
strategy we will follow is to establish sets of vectors for each of the two main
effects and then use these vectors to define the vectors for the interaction.?

Coding Main Effects. We code each main effect by disregarding the levels of the
other independent variable (or main effect) and then treating the main effect of
interest as if it represented an independent variable in a single-factor design. The
main effect of factor A, for example, requires two vectors (df, = 2) to capture
this variation, since there are three levels and we need a — 1 vectors in such a

3 The method we recommend is not the only way to extract information about the main
effects and interaction. On the other hand, its advantage, as you will see, is the ease with
which the factorial analysis can be accomplished and the fact that it focuses on the sorts of
meaningful questions we will consider in subsequent chapters.
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In Chap. 13, you saw how you could study the influence of two independent
variables that were being manipulated simultaneously in the context of a single
experimental design. The critical question surrounding the analysis of this joint
manipulation is whether the two independent variables interact to influence be-
havior. If they do, you need to examine the influence of each independent variable
with the specific levels of the other variable clearly in mind. On the other hand,
if they do not interact, you may examine the influence of either variable without
reference to the other independent variable. The analyses covered in Chap. 13—
the evaluation of the two main effects and that of the interaction—assess overall
or omnibus effects: they indicate only whether a main effect or an interaction is
present, not what is responsible for the significant F.

You will recall that we faced a similar problem with the ogunibus test in
the analysis of the single-factor design. The solution then was to locate mean-
ingful differences between means. We look for the same sort of information
with the factorial design, except that the procedures are more complicated,
and which procedures we use depends on whether significant interaction is
present. If there is a significant interaction, for example, we tend to focus our
attention on the individual treatment means within the body of the AB matrix, our
goal being to establish how the effects of one independent variable change with
the different levels of the other independent variable. Without a significant inter-
action, we turn instead to the marginal means—in effect, treating the design as
two separate single-factor experiments.

In Sec. 14.1 we will consider significant main effects, not because they are
more important, but because the analysis is easily generalized from the single-
factor design. The analysis of interaction, which we consider in Secs. 14.2 through
14.4 and in Chap. 15, takes two forms. The first consists of a systematic exam-
ination of the data row by row or column by column in the AB matrix in an attempt
to establish the nature of the interaction. This approach is called analysis of the
simple effects of an interaction. It involves an examination of the effects of one of
the independent variables while the other independent variable is held constant.
For example, we would look at the differences in vocabulary scores for the different
types of lectures, but only under one method of presentation at a time—the com-
puter or the standard method. The second approach, which we will consider in
Chap. 15, consists of an examination of smaller factorial designs constructed from
the larger design in order to express interaction in terms of more focused mani-
pulations. We will call this approach analysis of interaction comparisons. In es-
sence, this analysis takes a multilevel factorial design (e.g., a 4 x 3 design) and
reduces it ideally to a number of 2 x 2 designs. Both types of analyses are useful,
and we need to master both in order to understand fully the wealth of information
available from the results of a factorial experiment.

14.1 DETAILED ANALYSIS OF MAIN EFFECTS 215

141 DETAILED ANALYSIS OF MAIN EFFECTS

If the interaction is not significant, the design becomes for all practical purposes
two single-factor designs. That is, we examine each factor alone—looking at the
differences among the row marginal means and the differences among the column
marginal means separately—without reference to the levels of the other indepen-
dent variable. Only main effects associated with more than 1 df are candidates for
further analysis, of course, since a main effect with 1 df is already a difference
between two marginal means. In our present example, then, the B main effect, con-
sisting of two levels and based on 1 df, reflects the difference between computer
presentation and the standard presentation; no further analysis is possible. The A
main effect, consisting of three levels and based on 2 df, reflects the undifferen-
tiated effects of the three different lectures; additional analyses are necessary to
determine which comparisons between treatments are useful and interesting,

The ANOVA Approach :

The analysis under ANOVA consists of a simple extension of the procedures de-
scribed for the single-factor design. We first express the comparison (f ), which
is usually a difference between two means, in terms of coefficients ¢; That is,

)»A =X (¢ Glxi.v (14-1)
This comparison is then combined with other quantities to calculate the sum of
squares associated with it

OICIOPN

m.m;on!v. -z Aﬁmvw (14-2)

This formula is identical to Eq. (11-4), the formula for the single-factor design,
except for the insertion of b in the numerator to reflect the number of observations
contributing to each mean. More specifically, there were s observations associated
with each ¥, in the single-factor design, and there are (b)(s) observations asso-
ciated with each of the means contributing to the main effect of factor A in the
two-factor design. The error term for these single-df comparisons is the within-
groups error term from the overall analysis, MSg; 45. We use this error term because
it captures Y variability based on the full set of available data.

We will use the data from Chap. 13 for a numerical example. The marginal
means are 40.00, 26.00, and 34.50 for the lectures on physical science, social
science, and history, respectively. Suppose we wish to compare the average of the
means for the two science lectures with the mean for the history lecture. For this
comparison, we will use the coefficients (+3, +4, —1). With these coefficients,
we can calculate the difference between the combined science mean and the history

-~
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mean:

Ya= (+(40.00) + (+4)(2600) + (—1)(34.50)
=33.00 — 3450 = —1.50

This value is substituted in Eq. (14-2) to obtain
(2)(6) (—1.50)2

Stome = DT+ HDT4 (<17
27.00
=150 = 18.00

Since this sum of squares is based on 1 df, MS,..,.,. = 18.00. The F ratio is:

F= gm;a!:nv
Eo.\ih

From Table 13-5, we find that MSg;4p = 55.60. Completing the operations, we find

This difference is not significant. The dfs for this F are df,,, =1 and
faenom. = dfs;4p = 30. (Be sure to note that the denominator df are those associated
with the error term from the omnibus analysis, dfs;5.)

Single-df comparisons involving the main effect of factor B (which are not
possible in the present example because dfg = 1) would be calculated in the same
manner. All one needs to do is to modify Eq. (14-2) to reflect the appropriate
number of observations contributing to each marginal mean, namely, (a) (s). Thus,

a) () (Y)?
S B amp. = @O Wy VMA Mewmu o (14-3)
From this point on, we would follow exactly the same steps we outlined above for
comparing the A treatment means,

The MRC Approach

The detailed analysis of main effects is easily accomplished with MRC, provided
we use meaningful comparisons as vectors, For our example, consider the first two

vectors we established for the data set in Chap. 13 (Table 13-6), which we used -

to capture the A main effect. The first vector (A1), based on the coefficients (+1,
—1,0), specifies a comparison between physical science and social science, while
the second vector (42), based on the coefficients (+ 1, +1, —2), specifies a
comparison between the combined science conditions and the history condition.
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This latter comparison is the same comparison we just considered in the first part
of this section, “The ANOVA Approach.” All that we have to do now is to locate
the appropriate zero-order correlation between Y and A2 from the MRC analysis
and test its significance.

From Table 13-6, we find rj, = .0031. To test the significance of this 2, we
calculate the F ratio using Eq. (11-9):

r?

comp.

T U -Bpe)/(N—k- 1)

where 12,,, is the squared zero-order correlation coefficient representing the
single-df comparison and RZ ., is the squared omnibus multiple correlation co-
efficient, obtained when the required full set of vectors (the vectors for the design—
A, B, and A x B, or 5 vectors) is entered into the analysis. The numerator of the F
ratio reflects the proportion of Y variability associated with a single vector, which in
this case represents a single-df comparison. The denominator contains the quantity
1 — R} nax,, which is the proportion of Y variability not associated with the com-
bined effects of the experimental treatments. This residual term is divided by the
appropriate df, which corresponds, of course, to the df for the within-groups source
of variance, dfs;45. (In MRC,’as you know, these df are represented by N — k — 1,
where N is the total number of observations and k is the maximum number of
vectors required to capture the combined treatment effects.)

All that we need to complete this example is the residual term and the residual
df, which may be found in Table 13-8—namely, 1 — R} ., = 2880 and dfy, .5 =
N —k — 1 = 30. If we substitute the different quantitites in Eq. (11-9), we obtain

po 0031 o031

F

which is identical to the F we obtained with ANOVA for this comparison.

The correspondence between ANOVA and MRC, again, can be demonstrated
in other ways as well The SS,_, can be obtained from the MRC analysis simply
by multiplying the r2,,,, by SSy. Thus,

S 4eoms. = (Pmp) (SSy) = (0031) (5793.00) = 17.96

which, except for rounding error, is equal to the value of 18.00 obtained with

ANOVA. The 12, may also be calculated from ANOVA by dividing the S dcomp.

by $S7. That is, :
SS.

. Tlomy, = ez =
: SSy  5793.00

which is equal to the squared cotrelation coefficient obtained with MRC.

i i
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Comment

You have seen how differences among the marginal means may be analyzed by
either statistical approach. With ANOVA, the focus is on the difference between
the means represented by the single-df comparison of interest, With MRC, the focus
is on the zero-order correlation between Y and the vector reflecting the single-df
comparison. An obvious strategy in planning the MRC analysis is to represent the
main effects of the two independent variables by meaningful comparisons. This
way the relevant zero-order correlations are readily available for a detailed analysis
of the main effects—if such an analysis is appropriate, of course. If you desire
additional comparisons, you can calculate these T.omp.’S by simply including appro-
priate vectors when you set up the data for analysis and instructing the computer
to include these vectors in the zero-order correlation matrix available from the
MRC program.

As we pointed out earlier, systematic interest in differences among the mar-
ginal means generally is relevant only when the interaction is not significant. The
primary reason has to do with interpretation: differences among marginal means
are often difficult to interpret when there is a significant interaction—as are the
main effects themselves. When interaction is present, any conclusion dfawn from
an analysis of the marginal means will need to be qualified. Consider the data
from our numerical example presented in the upper half of Fig, 13-1. The analysis
revealed a signficant main effect of presentation method, Although it would prob-
ably be safe to conclude that the computer method was generally superior to the
standard method, since the computer method was consistently better for all three
lectures, we would still have to take into consideration the fact that the size of its
superiority depends on the type of lecture presented—large for social science and
small for physical science and history—whenever we interpret the results of the
experiment. .

142 USING ANOVA TO ANALYZE SIMPLE EFFECTS

General Considerations

Once a significant interaction:has been established, researchers usually turn their
attention to an analysis of the means within the body of the AB matrix; they have
little interest in the analysis of the marginal means. One commonly used technique
consists of the systematic analysis of the treatment means—either one row at a
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time-or one column at a time." This type of analysis is called the analysis of simple
main effects, or simple effects, for short.

The analysis of simple effects consists of the examination of the effects of one
of the independent variables with the other independent variable held constant. In
the context of our example, we might examine separately the effects of the different
lectures under computer presentation and then their effects under the standard
presentation. In each situation, we are holding presentation method constant while
permitting only the type of lecture to vary in the analysis.

In essence, then, this is an analysis scheme that views the factorial design as
a collection of separate single-factor experiments, each involving the same manipula-
tion. Because there is a significant interaction, we can conclude that the outcomes
of these “separate experiments” are in fact not the same; the analysis of simple
effects represents an attempt to determine the ways in which these outcomes differ.
Itis in this sense that we come to “understand” or “explain” a significant interaction
through the analysis of simple effects.

The analysis described above focused on the simple effects of factor 4, which
consisted of the effects of types of lectures for the computer presentation (referred
to as the simple effects of A at level b,) and for the standard presentation (referred
to as the simple effects of A at level b,). We could just as well have considered the
effects of the two methods of presentation (factor B) separately at each level of
factor A. In this case, there would be three “single-factor experiments” all involving
the comparison of computer and standard presentation, but with the type of lecture
held constant. Specifically, there would be one such “experiment” for the subjects
receiving the physical science lecture, one for the subjects receiving the social sci-
ence lecture, and one for the subjects receiving the history lecture. These analyses
would be called the simple effects of factor B at levels a,, a,, and as, respectively.

Analysis of Simple Effects

Since the specification of a simple effect is equivalent to a single-factor experiment,
the analysis builds on procedures we have already considered in earlier chapters.
We isolate the appropriate column or row in the AB matrix and calculate a sum of
squares based only on the data in it. We then treat this subset of the data, which
represents the comparison of interest, exactly as if it had-come from an actual
single-factor experiment, rather than from a “slice” or a part of the AB matrix.

As an example, the treatment sums for the three lectures (factor A) given
with the computer presentation (level b,) are:

! Occasionally, it is profitable to conduct the analyses both ways, i.e., by rows and by columns,
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4 4 dz |Sum
276 240 228 | 744

Each sum is based on s = 6 observations. If we treat these data as the results from
a single-factor experiment, the between-groups sum of squares (“SS,") is calculated
by:
SSaarh = "S54"
x .S:N :H:N
s @®

where “A” and “T” are data drawn from one of the rows of the AB matrix. Sub-
stituting in this formula, we find

276% + 240% 4 2282 7442
6 3)(6)

_ 185760 553,536
T 6 18

= 30,960.00 — 30,752.00 = 208.00

.w,wl-;_ =

The df associated with this sum of squares is 1 less than the number of treatment
conditions; that is,

Hyup, =a—1=3-1=2
The mean square is formed in the usual manner by dividing the SS by the appro-
priate df.
.wM; atbg
&.h ath,

208.00
2

MS b =

= 104.00

The F is calculated by dividing the mean square representing systematic variance
by the error term from the overall omnibus analysis (see Table 13-5). For these data,

142 USING ANOVA TO ANALYZE SIMPLE EFFECTS 221

which is not significant. (With df,,,,. = 2 and dfy,m. = 30, the critical value of F
at & =05 is 3.32) It appears that the three types’of lectures produce roughly
equivalent results under the computer presentation.

The corresponding analysis for the standard presentation produces a different
conclusion. The treatment sums at level b, are:

a4 a4 a; |Sun
204 72 186 | 462

Following the same steps, we find

2042 + 722 + 186 4622

SSaura = 6 NOIG)
_ 81396 213444
T 6 18
= 13,566.00 — 11,858.00 = 1708.00
1708.00
MS gy = ——— = 85400
854.00
= =1536
F=3560 3

where the value of F is significant.

" Thus, the analysis shows that the interaction may be characterized as con-
sisting of a nonsignificant effect of lectures under computer presentation and a
significant effect of lectures under the standard presentation. As informative as this
conclusion may be, we still do not know exactly what differences are responsible
for the significant simple effect. All that the analysis establishes is that differences
exist among the three lectures, not where they exist. Additional analysis will be
necessary to reveal this important information.

Simple Effects of Factor B

The analysis of the simple effects of factor B is conducted in an analogous fashion.
We use the same two-step process of determining which simple effects are signif-
icant and—when we locate those that are—of testing specific differences between
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means. If the simple effects are each associated with 1 df, as they are in the numeri-
cal example, only the first step is possible. That is, the analysis will consist of
comparing the two methods of presentation separately for each of the three lecture
conditions, and no further analysis is possible. '

Analysis of Simple Comparisons

‘With the single-factor design, the determination of a significant omnibus F is usu-
ally followed by a number of additional statistical tests designed to establish the
critical factors responsible for the significant F. We follow exactly the same logic
when we discover a significant simple effect in a factorial experiment. In our exam-
ple, an examination of the treatment means for the standard presentation suggests
that there is a sizable difference in performance between subjects receiving the
social science lecture and those receiving the other two lectures. The social science
subjects recalled 12.00 vocabulary words, while the physical science subjects re-
called 34.00 words and the history subjects recalled 31.00 words. We can test this
observation by considering two comparisons: one, between physical science and
history, to’establish the equivalence of these two conditions; and another, between
social science (12.00) and the average of physical science and history (32.50), to
establish the discrepancy between social science and the other two groups.

It is important to mote at this point that to be of any analytical benefit, single-
df comparisons should represent meaningful questions. The analysis suggested in
the preceding paragraph does not give us much insight into the underlying reasons
for the effect. What is the basis for comparing physical science and history? A more
revealing comparison is between the two science conditions. We made this point
previously when we first introduced single-df comparisons in the analysis of the
single-factor design. The point is equally valid when we are analyzing significant
simple effects. -

The analysis of simple comparisons is merely an extension of the analysis of
single-df comparisons that we applied to the single-factor design. We use coeffi-
cients to express the simple comparisons in which we are interested and calculate
the sums of squares. As an example, suppose we wanted to compare the two sci-
ence means. The coefficients for this comparison are (¢;: +1, — 1, 0), and the cor-
responding means are 34.00, 12.00, and 31.00 for physical science, social science,
and history, respectively. The difference between the two means W) is

Ya atry = (€ Tap) + (63) Fayp,) + (63) T o)
= (+1)(34.00) + (—1)(12.00) + (0)(31.00)
= 34.00 — 12.00 = 22.00 , i
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This difference is substituted in an equivalent of Eq. (11-4) as follows:

(8) W gapy)?
5y = AR
_ (6)(22.00)*
T(+D* 4 (-2 +(0)?
_2904.00
T2

= 145200

Since there is 1 df associated with this comparison, MSy___ .5, = 1452.00. The
F ratio is formed by dividing the comparison mean square by the error term from
the overall analysis (MSs;,p) That is, :

F= Efeim. atby

gwm\kw
_ 1452.00
= 5560

which, with df,,,, =1 and &wn.sw_. =30, is significant.

=26.12

14.3 USING MRC TO ANALYZE SIMPLE EFFECTS

You will recall that with MRC the number of vectors required to represent any
given source of variability fully is equal to the df associated with that source. For
the simple effects of factor A, then, a — 1 vectors will be needed for each level of
factor B for the present example, the number of vectors is 2. For simple effects of
factor B, b — 1 vectors will be needed for each level of factor A; for the present
example, the number is 1.

Coding Simple Effects

The method we will use to construct vectors that reflect simple effects is based on
the vectors we use to code the relevant main effect. This method follows a relatively
simple procedure:

1. Construct vectors to define the relevant main effect.

2. Usea nmm.mmﬁnsn of 0 for all observations not relevant to a particular simple
effect. .



Is the A x B interaction

significant?
i
. NojYes
Analyze . Analyze
main effects simple effects
Is main effect : Is mgv—m effect
significant? significanc?
No | Yes No | Yes
Stop Analyze main | Stop Analyze simple
comparisons . comparisons

FigureJ4-1 Schematic representation of an analysis with no planned comparisons.
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All thee experimental designs we have considered so far are examples of a particular

class of designs in which subjects serve in only one of the treatment conditions.
Because the assignment of subjects to conditions is raridom in these designs, they .

are called completely randomized designs. Since all treatment effects are based on
differences between independent groups of subjects, these designs are also called
between-subjects designs.

In another class of designs, one that is quite popular in the behavioral sciences, -
subjects serve in several or.even all of the treatment conditions. Because different-

treatment effects observed in the same subjects represent differences within rather

than between subjects, these designs are called within-subjects designs. (Such i

designs are also referred to as designs with repeated measures.) In this chapter,
we will discuss the simplese within-subjects design, in which all subjects receive
all levels of a single independent variable. In Chap. 17, we consider a relatively
common factorial design in which only the levels of one of the independent
variables are administered to the same group of subjects, while the levels of the
other independent variable are administered to different groups of subjects.

16.1 - ADVANTAGES AND DISADVANTAGES OF
WITHIN-SUBJECTS ‘DESIGNS

Advantages.

There are several reasons why researchers choose within-subjects designs. One of
these derives from the fact that these designs permit the examination of the effects
of all levels of an independent variable at the level of the individual subject. Since
each subject receives all the treatment conditions, we can. study how each level of
the independent variable affected each of the participants: All else’ being equal,

researchers usually prefer to observe directly the.effects of each-level of the inde- .
pendent variable on individual subjects rather than inferring the effects of the levels

from differences between groups of subjects receiving different treatments, -

* The within-subjects design is also ideally suited for studying such phenomena
as learning, transfer of training, and practice effects of various sorts. In a learning
experiment, for example, subjects are usually given repeated exposures on a partic-
ular task, and their performance is assessed following each practice trial. The

researcher can then determine how subjects improve:over repeated presentations .

of the task The independent variable in this case consists of the number of
learning trials given all subjects.

The primary reason why researchers choose within-stibjects designs, however,

is that-such designs may help them increase the. statistical sensitivity, or:power,
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of the experiment. Under most circumstances, the error terms used ta evaluate
the significance of treatment effects in within-subjects designs are considerably
smaller than those used in corresponding between-subjects designs. With smaller
error terms, more treatment effécts will be significant, and so the power will be
increased. Why are error terms smaller in this type of design? We will consider
2 simple explanation before turning to the detailed analysis in later sections of this

“chapter.

Suppose we are comparing three treatment conditions in a between-subjects
design. By now you realize that even sizable differences among the means might
be entirely due to uncontrolled factors. A major source of uncontrolled variability
is the fact that subjects with widely different abilities are randomly assigned to
the treatment groups. As you have seen, the pooled within-groups mean square
(for example, MS,, for a single-factor experiment) provides an estimate of the
degree to which the differences among the means may be reasonably viewed as
only the result of uncontrolled subject differences.

Consider another comparison of three treatment conditions, this time set up
as a within-subjects design in which subjects receive all three treatments. How
are we now to interpret differences found among the treatment means? Can un-

controlled factors still affect the outcome of the experiment, or are they all

eliminated because the same subjects are tested in all the treatment conditions?
A moment’s reflection should suggest that it is virtually impossible to remove
completely the influence of uncontrolled factors in any experiment. There are still
differences introduced by our inability to exactly duplicate the treatment condi-
tions for different subjects; things that might vary from test to test include factors
inherently associated with the treatments themselves, such as the calibration of

any equipment and the exact reading of instructions; and other, external factors, .

such as.room temperature, lighting, and background noises. Moreover, even the
same subject will change slightly on repeated testing: variations in motivation,
attitude, and other factors can cause inconsistent behavior in subjects. On the
other hand, it will usually be true that the collective influence of all of these
uncontrolled factors will be less with this design than with randomly formed groups

-of subjects. The result, then, is a smaller error term with which to evaluate the
"observed differences among treatment means. Assuming that the treatment effects

are the same in the two designs, the within-subjects design will be more sensitive
than the corresponding between-subjects design. This is because the denominator
in the F ratio is smaller and, thus, the F ratio itself is larger.

How can the vnn.cﬁnu.ng.ona design “compete” with this more sensitive
design? First, there are circumstances in which testing subjects more than once is
either not possible or net feasible. Any experiment using differential instructional
sets to define the different treatments, for example, can probably not be con-
vincingly administered to the same subjects. As another example, there are some
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experiments in which previously administered treatments continue to influence
subjects’ behavior under a new treatment condition. Second, there are experiments
in which subjects are not willing or able to serve in more than one treatment
condition. Human subjects who are serving in an experiment as part of a course
requirement, for example, may have only an hour or two to spend; a complete
administration of the treatments, on the other hand, may take considerably longer,
Third, it is always possible to achieve an increase in power by adding to the
sample size, rather than by selecting a within-subjects design. Of course, limits
on time, money, and other resources may reduce the effectiveness of this strategy.
Finally, between-subjects designs can often be made considerably more sensitive
through the use of a statistical procedure called the analysis of covariance. (We
consider this analysis in Chap. 22.)

Disadvantages

There are several problems associated with repeated measures, namely, practice
effects, - differential carryover effects, and the potential for violations of certain
statistical assumptions. We will consider each briefly.

General Practice Effects. There is no foolproof way of escaping the fact that the
performance of the subjects will change systematically during the course of re-
ceiving some or all of the treatments in an experiment. The changes may be
either positive or negative. On the positive side, in experiments where familiarity
with the experimental procedures increases performance, subjects will usually im-
prove as they gain experience with the general requirements of the experiment.
On the negative side, subjects may “deteriorate” on subsequent tests as they be-
come bored or tired during the course of the experiment. We will refer to any
such changes that occur during the course of testing as practice effects. As con-
ceptualized, practice effects are assumed to be general and not the result of exposure
to any particular treatment condition (or conditions). Since it is unlikely that these
positive and negative effects of repeated testing will be in perfect balance, we
must take their net effect into consideration when designing an experiment.
One solution is to introduce procedures that are designed to eliminate the
general effects of repeated testing. If improvement with repeated trials is 2 possi-
bility, for example, subjects can be given preliminary training on a relevant task
before they receive the independent variable so that the improvement is unlikely
to occur during the actual experiment. (This technique is frequently used in
psychophysical studies and in experiments with animals)) As for the negative
factors, boredom can often be minimized through the use of monetary incentives
designed to maintain the same level of motivation during the course of the study,

161 ADVANTAGES AND DISADVANTAGES OF WITHIN-SUBJECTS DESIGNS 265

while fatigue can be reduced by introducing rest periods between successive ad-
ministrations of the treatments.

Rarely will these steps remove all practice effects completely, however. For this
reason, then, researchers usually employ an additional technique which spreads
any remaining practice effects equally over the treatment conditions. To see how

; ' this works, consider a within-subjects design consisting of only two treatment con-

ditions. Suppose there is a positive practice effect in this experiment, with subjects
showing higher scores on whatever task they receive second. If the treatments are
presented in the same order to all subjects—for example, condition 1 and then
condition 2—it will not be possible to disentangle any effects produced by the
different treatments from the overall improvement due to the practice effects. This
is because performance on only one of the conditions (condition 2) will show the
benefits from practice. We can avoid this problem quite simply by reversing the
order of the two conditions (administering condition 2 and then condition 1) for
half of the subjects. This way, scores in both conditions benefit equally from any
practice effect, removing it as a potential source of bias.

A common technique for neutralizing the effects of practice is 8&-5&&25-
ing, which consists of the systematic variation of the order in which the treatments
are presented to different subjects. This procedure, which is discussed in most
elementary textbooks on experimental design, guarantees that each reatment con-
dition is presented an equal number of times first, second, third, and so on, in
particular sequences of conditions given different subjects.

Differential Carryover Effects. Differential carryover effects are lingering effects of
one or more earlier treatment conditions that combine with the effects of treatments
administered later in the testing order. Since these effects will rarely be the same
for all conditions—which is why the word differential is used—they cannot be
neutralized with counterbalancing. For this reason, therefore, they pose a serious
problem for any researcher contemplating a within-subjects design.

Consider, for example, an experiment consisting of a drug condition and a
control condition. We can reasonably expect that if subjects experience the drug
condition first, its effect will influence how they behave when they subsequently
receive the control condition, but that experiencing the control condition first will
have little effect on how they respond to the subsequent drug condition. The only
circumstance under which counterbalancing will work is when the carryover effects
for all conditions and orders are the same. Consequently, counterbalancing will
not eliminate carryover effects in this situation.

Problems of this sort can occur whenever the treatment conditions differ
dramatically, as do the control condition and the experimental condition we dis-

‘cussed in the preceding paragraph. Similar problems often result when instructions
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are used to create a new treatment condition and to change a subject’s perception
of a task performed in a prior treatment condition—a common technique in
behavioral research. It may be virtually impossible with instructional independent
variables to have subjects completely disregard what they have been told in a
previous condition. Greenwald (1976) provides a useful discussion of these sorts
of problems, which he refers to as context effects.

It is often difficult to distinguish between practice effects and differential
carryover effects, since both effects result from subjects’ receiving more than one
of the treatment conditions. The difference lies in whether changes with successive
testing are the same for all conditions. In the drug example, they are not. You can
always check for the presence of differential carryover effects by plotting the means
for each treatment condition on a graph as a function of when it was administered—
overall means for first, second, and third place, and so on—and then comparing the
“practice” curves for the different conditions. Practice effects will be revealed if the
functions for the different treatments exhibit the same overall shape; differential
carryover effects will be revealed if the shapes are different

You should always consider carefully the possibility of differential carryover
effects whenever you contemplate a within-subjects design, Even if you do not ex-
pect differential carryover effects to appear, you should nevertheless always examine
the treatment means for ther. If they do appear, you can still compare the treatment
conditions on the first test, of course, since carryover effects cannot appear until
after the first test; but any statistical tests on the data will probably lack power
because of the small number of subjects assigned to the different conditions.

Statistical Assumptions. The use of the F test to evaluate the significance of treat-
ment effects is predicated on a number of assumptions, In addition to the assump
tions of normality, homogeneity of within-treatment variances, an{ ind ependence,
which underlie the statistical analysis of completely randomized designs (see Sec.
8.4), within-subjects designs operate under an assumption concerning the corre-
lations between the multiple measures obtained from the same subjects: that the
correlations between all possible pairs of treatments are equal. With three treat-
ments, the assumption is that the correlations between levels ¢, and a,, between
levels a; and a3, and between levels a, and a, are equal. For the evaluaton of F
ratios with completely randomized designs (see Sec. 8.4) only severe violations
concerning the nature of the distributions of treatment populations are critical,
but such is not the case with within-subjects designs. Even minor violations of the
underlying assumption will affect how we evaluate the significance of an F ratio
in that the critical values of F obtained from Table A-1 are too small—the actual
critical values we should be using are larger than those listed in the F table. A
relatively simple solution to this problem is to use a slightly more stringent signifi-
cance level—.025 rather than the standard .05—which will correct the difficulty
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in most situations." Fortunately, evaluation of single-df comparisons seems to be
unaffected by these violations, provided that specific error terms are used for these
tests (Keppel, 1982, pp. 472-473). We will discuss the use of such error terms
in Sec. 16.4.

16.2 THE OVERALL ANALYSIS: THE ANOVA APPROACH

For the overall statistical analysis of the single-factor within-subjects design, we
make use of procedures we considered in earlier chapters. Only one point is new:
in order to evaluate the significance of the treatment effects, we need to" calculate
an error. term that takes into account that all subjects receive all the treatment
conditions.

Design and Notation

The single-factor within-subjects design is defined as an experiment in which all
subjects are tested under all the treatment conditions. In fact, the design can be
viewed as a type of factorial design in which the independent variable (factor A)
and subjects (factor S) are crossed to form all possible combinations of the levels

of the two factors. We will refer to this arrangement as an (A x S) design to.

emphasize the relationship of this design to an actual factorial. (We use parentheses
to designate a within-subjects factor, for reasons that we will explain in Sec. 17.1.)

As an illustration of the (A x S) design, consider an experiment in which
s = 3 subjects are each tested under all @ = 3 treatment conditions. We will assume
that some. form of counterbalancing is used in order to balance possible practice
effects.® This design and the notation required are presented on the right-hand
side of Table 16-1. For contrast, the correspondiing between-subjects design is
presented on the left. It is important to note the differences between these two
designs. Both designs produce the same quantity of data, namely, three Y scores
obtained from each of the conditions. The basic difference is that the same three
subjects are represented under each of the three treatments in the within-subjects
design, while three different subjects are correspondingly represented in the be-
tween-subjects design. Because of this difference, we have one additional piece of
information from the (A x $) design that we lacked with the other design, namely,

1 The nature of these assumptions and the steps that can be taken to reduce the effects of
violating them are discussed in most advanced statistical books (see, for example, Keppel,
1982, pp. 467—473; Kirk, 1982, pp. 256~262; Myers, 1979, pp. 171-174; and Winer, 1971,
pp. 281-283). ’

" 2 This could be accomplished, for example, by presenting the three conditions in the order

1-2-3 for the first subject, 2-3-1 for the second subject, and 3-1-2 for the third subject.

!
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Table 16-1
Compatrison of the Between-Subjects and Within-Subjects Designs

Between-Subjects Design Within-Subjects Design
a a a a4 a 4 | Sum
sy | Yo S¢ | Tou s [ Y3, si | Yy You Yag | S
Sz Yi2 S Y5 sg | Yas Sz Yi Yo Yip S,

S3 Y3 S¢ Yo6 s | Yag S3 Yipg Y35 Yi3 S;
Sum | A, Sum | 4, Sum | A, Sum | A, A, A, T

an overall sum of the treatment scores for each subject. The sums for individual
subjects, which are designated S,, S;, and S,, are represented as row marginal
sums in the table. As you will see, we will need these sums when we calculate the
new eITor term.

The Analysis

With the between-subjects design, we divided the total sum of squares SS; into
two component parts, the treatment sum of squares S5, and the within-groups
sum of squares SSs;,. This latter quantity, which is based on the pooled variation
of subjects treated alike, is used to calculate the error term; it is an estimate of
the uncontrolled variability present in an experiment based on 2 between-subjects
design. As we have pointed out already, the (A x S) design provides a way of
reducing this uncontrolled variability; it effectively reduces the contribution of
chance factors to the differences among the treatment means. Using each subject
for all the treatments allows us to obtain an estimate of the degree to which indi-
vidual subjects respond consistently across the conditions, or an estimate of the
consistency of individual differences. If we can assess this consistency, we have, in
effect, explained more of the dependent variable, and thus leave a lower amount
of unexplained variability.

Calculating the New Sums of Squares, The key to the analysis, then, is to estimate
the degree to which using the same subjects represents a consistent or constant
factor in the experiment. Such an estimate is easily calculated from the information
provided by the overall sums for the respective subjects. That is, the sum for each
subject (S;) can be transformed into a mean for each subject s ), which in turn
can be represented as a deviation from the overall mean ¥ and, ultimately, as a
sum of squares SSs. Stated another way, we can compute a main effect of subjects
(SSs), which represents the degree to which the subjects behave consistently as
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they shift from treatment to treatment. If we subtract this sum of squares from
the pooled “within-groups” sum of squares SSs;,, which, you will recall, would
represent uncontrolled variation if we ignored the fact that the same subjects are
involved, we obtain a new sum of squares that can be used to estimate the degree
to which uncontrolled factors are operating in the (A x S) design. That is,

SSerror term = SSs4 — SSs

We noted in the preceding paragraph that the subject sum of squares is based
on the deviation of each subject’s average score Ys from the grand mean Yy; in
symbols,

Y- ¥
As you have seen before, we can use this deviation to express the sum of squares
in terms of basic ratios. More specifically,
S8s = I8} - 1]

where [5] and [T] represent basic ratios based on subject sums $ and the grand
sum T, respectively. The only new quantity is [S], which is calculated as follows:

[§l=—
a

where S = the sum obtained by adding together all the Y scores for each subject
a = the number of treatments given to each subject
The formula for [T] should be familiar to you by now.

As we indicated earlier, the sum of squares for the error term used in the
analysis of the (A X S) design may be obtained by subtraction. Expressing that
sum of squares in terms of basic ratios, we find that

SServor term = 5534 — SSs
= (Y] - D) - (s}~ (1D
=[] -l - 5+ (16-1)

It is also possible to conceptualize this sum of squares as an interaction, which
is how we will designate the error term in the remainder of the chapter. We pointed
out already that the data matrix for the (4 x S) design in Table 16-1 is in fact a

factorial matrix, where the columns represent the levels of the independent variable
(factor A) and the rows the “levels” of the subject “factor.”® From our knowledge

3 The only difference between the matrix in Table 16-1 and those associated with factorial

. designs we considered previously is that each cell of this matrix contains one observation

rather than the sum of several
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of factorial designs, we would expect to subdivide the total sum of squares into
sums of squares for two main effects (854 and SSg) and an A x S interaction
(SS4x 5). There would be no “within-cell” variation, of course, since there is only
one observation per cell in this matrix. We can now calculate the interaction sum
of squares by subtracting the sums of squares for the two main effects from the
total sum of squares:

SSuxs =SS5 — S5, — S5
= (Y1~ [1D) — {4 — (1D - (8] - [1])
= [Y] — [Al - [S] + (1)
which is identical to Eq. (16-1).

Expressing the error term as an interaction sum of squares provides us with
another way of understanding the nature of this new quantity: the A x § inter-
action represents the unique manner in which the different subjects respond to the
treatment conditions. In other words, the error term consists of variability not at-
tributable either to the treatment effects or to consistent individual differences.

Computational Formulas. The computational formulas for the overall analysis
of variance are presented in Table 16-2. We have already discussed the formulas
for the sums of squares. The formulas for the degrees of freedom require little
comment, except for the error term, which reflects the form usually associated
with an interaction. That is, the df for an interaction are generally specified as the

Table 16-2
ANOVA: Computational Formulas

Sowrce | Basic Ratio* df Sum of Squares MS F
A SS, | Ms,
A Eluul a—1 [Al~-I1] T, | M5,
_ rs2 _ SSs
S | B=== s—1 {1 —11] Fra
AXS|M=ZV |@=D6-D | Y- @ -5+ | Maxs
&.ﬁn x5
N.N
Total | [T] = P10 @) -1 (Y] — 1}

* Bracketed letters represent complete terms in computational formulas; a particular term
is identified by the letter(s) appearing in the numerator,
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product of the df’s associated with the relevant main effects. In the present case,

dfyxs = o df9)
) =(@-1DG-1

]
The remainder of the analysis is relatively straightforward. The treatment effects
are assessed by evaluating the significance of an F ratio formed by dividing MS,

by MS, xs.

A Numerical Example

For a numerical example, we return to the data we used to illustrate the analysis
of the between-subjects single-factor experiment. In that experiement, subjects
were randomly assigned to one of the three meatment conditions; lectures on
physical mmobnn.ﬁahv. social science (a,), and history (a,). Each 8=&n._ou was
assigned 12 subjects, for a total of 36 subjects. Suppose instead that the experi-
ment was an (A x ) design in which we had only 12 subjects and each of the
12 subjects received all three lectures rather than only one. Consider the data
presented in Table 16-3. The data matix of Y scores (the AS matrix) displays the
data by treatment and subject and provides all the information necessary to conduct
an overall ANOVA.

Table 16-3
Numerical Example: AS Matrix

Treatments

a4 a as Sum

st |53 47 45| 145
s |9 £ 44 132
ss |47 39 38 124
s¢ |42 37 36 115
ss |51 42 35 128
ss |34 33 33 100
s |44 13 46| 103
ss |48 16 40 104
ss [35 16 29| g0
se |18 10 21 49
su |32 11 30 73
s.z |27 6 20 53

Sum (480 312 414/ 1206
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Table 15-4
Summary of the Analysis
Source Basic Ratio Sum of Squares i Ms . F
A [4] =41,595.00 M —-T]=119400 2 59700 " 1230*

s [S1=43,932.67 [S1-[T)=353167 11 32106
AXS  [Y]=46194  [Y]—[A]—-IS}+[I]=106733 22. 4852

Total [T]=40401.00 [Y]-[T]=5793.00 35

*p<.0L

We will assume that the order in which the lectures were given was systemat-
ically varied among the subjects, using some appropriate counterbalancing scheme.
In the present case, one could arrange the three lectures in all six possible orders,
namely,

1-2-3; 1-3-2; 2-1-3; 2-3-1; 3-1-2; and 3-2-1

and use each order twice, so that, for example, subjects 1 and 2 would receive
order 1-2-3, subjects 3 and 4 would receive order 1-3-2, and so forth. However it
is accomplished, the arrangement should guarantee that each lecture is presented
equally often as the first, the second, or the third condition subjects encounter, in
order to balance practice effects evenly among all three treatment conditions.*
Without comment, we will calculate the basic ratios needed for the ANOVA:

" 1206
@) (312
TA? _ 4807 + 3122 + 4142

=== 2

Tl =

= 40,401.00

= 41,595.00

IS 145241322 4 - 4 732 4532
[ =ZX M4 IR oner

Eum%um%+$N+.:+uo~+~o~uap$

The values of these basic ratios are entered in Table 16-4, where they are combined
to produce the required sums of squares, The F of 12.30, which is evaluated with
Uom. = 2 and dfypom. =22, is significant at the p < .01 level. -

# This experiment would probably also require the use of three different vocabulary tests,
That is, each subject would receive a different vocabulary test following each lecture. Good
gg&mﬁmﬁﬂo&&%%Eﬂnnnwouynrugvnﬁnmgogﬁﬂw
each of the three treatment conditions, Otherwise, it would not be possible to separate out
the effects of the experimental wreatments (lectures) from any differences in test difficultv.
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We mentioned in Sec. 16.1 that when certain statistical assumptions are not
met by the experimental data, a more conservative method of evaluating the signif-
icance of the obtained F may be necessary. One approach we suggested was to
adopt a-slightly more stringent significance level and to evaluate the F with this
new critical value. To illustrate, we might consider setting o = .025, for example,
rather than equal to the usual .05. The critical value would now become 4.38 rather
than the 3.44 normally appropriate when the statistical assumptions are met. In
the present example, this new significance level does not change our decision;
the F is still significant.® .

16.3 H.E.m OVERALL ANALYSIS: THE MRC APPROACH

There are several ways to approach the analysis of the (4 x §) design with MRC
procedures. As you might suspect, the differences are in the coding used to represent
the new critical source of variability. As we did when we discussed previous designs,
we will emphasize contrast coding. The coding system needs to take into account
the fact that “subjects” constitute a2 main effect. Thus, for within-subjects designs,
the only new coding for us is the coding of “subjects”; otherwise, the coding system
for treatment effects is the same as it was in the between-subjects design.

Coding the Main Effects
As we just stated, we will represent the variability of subjects with contrast coding.
The number of vectors needed for this main effect is the number of subjects minus

-1, With contrast coding, we easily construct a set of vectors whereby each vector

in essence “compares” a subject systematically with each of the other subjects.
The code matrix depicted in Table 16-5 indicates the results of this simple strategy.

/As you can see, the first subject has been used as the “comparison” subject, who

is assigned a + 1 in all the subject vectors (vectors 1 to 11): the remaining subjects

# An alternative approach is to use the so-called Geisser-Greenhouse correction (Geisser &
Greenhouse, 1958), which gives us the appropriate critical value for the worst situation in
which the assumptions are maximally violated. For this design, the correction consists of
using df,,, = 1, rather than 2, and df,m. =5 — 1 = 11, rather than 22. The new critical
value of F is now 4.84, and again, the observed F is significant. The Geisser-Greenhouse
correction is only necessary when assumptions are maximally violated, however: the correc-
tion for in-between situations—between maximum violation and no violation—is more
comnlicated (cre Kermal 1087 we 470 47N
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Table 16-8
Vectors Representing the A x S Interaction

In essence, the MRC strategy allows us at least two options for determining
the error term:’

1. To calculate the error term directly by creating interaction vectors based

Vectors ] on the vectors established for A and S
Subject | ¥ | AISL AlS2 --- AISIO ALSIl | A2S1 A2S2 --- A2SI0 Aggy | 2. To calculate the error term indirectly by summing RZ , and R 5 to obtain
1 |3 1 1 1 1| 1 1 1 ) R mex. and subtracting this sum from 1, as specified in Eq. (16-2)
2 49| —1 0 0 0 -1 0 0 0
3 47 0 -1 0 0 0 -1 0 0
4 142 0 0 0 0 0 0 0 0
5 51 0 0 0 0 0 0 0 0 16.4 COMPARISONS INVOLVING THE TREATMENT MEANS
6 34 0 0 0 0 0 0 0 0
Y7 44 0 0 0 0 0 Y 0 0 " As we have stated throughout this book, researchers usually design single-factor
8 |48 0 0 0 0 Y 0 0 0 experiments with specific comparisons between the treatment conditions in mind.
9 35 0 0 0 0 0 0 0 0 The same analytical procedures available for the analysis of a between-subjects
Ww ww m w Im w m .w Iw m design are available for a within-subjects design. The only complication is the
12 27 0 0 0 -1 0 0 0 -1 determination of the error term. With the completely randomized design, the error
term for the omnibus analysis (MS,,) is used as the denominator term of the F
1 471 -1 . -1 -1 —1 1 1 1 1 ratio for any comparison undertaken in the analysis. This procedure was justified
2 1 0 0 0] -1 0 Y 0 by the assumption that population treatment variances are equal, which implies
3139 0 1 0 0 0 -1 0 0 that the overall error term provides a perfectly suitable estimate of error vari-
4 37 0 0 0 0 0 0 0 0 ance present in any comparison conducted on the treattnent means.®
M ww M w W M w m W M With the (4 x S) design, on the other hand, there is no assurance that the error
a, ; 7 13 0 0 0 0 0 0 0 0 term from the omnibus analysis (MS,,s) can serve a similar function in the
8 16 0 0 0 0 0 0 0 0 detailed analysis of an experiment. This certainty is lacking because the A x §
9 16 0 0 0 0 0 0 0 0 interaction is actually an average of a number of component interactions, which may
10 10 0 0 0 0 0 0 0 0 or may not be appropriately estimated by the overall error term. In many cases,
11 11 0 0 1 0 0 0 -1 0 they are not. The solution to this problem is conceptually simple, namely, to use
12 6 0 0 0 1 0 0 0 -1 as error terms A X S interactions that are each relevant to specific single compari-
1 45 0 0 0 0 2 5 Y ) sons, which we will call A,,,,,, x § interactions. As you will see, each of these error
2 41 0 0 0 0 2 0 0 0
3 38 0 0 Y Y 0 2 0 0 7 A third method of coding is frequently recommended for the analysis of within-subjects de-
4 36 0 0 Y Y Y 0 Y 0 signs called sum coding or criterion scaling (see, for example, Edwards, 1979, pp. 120-123;
5 35 Y 0 0 0 0 0 0 0 Pedhazur, 1977). This ingenious method captures the entire source of subject variability with
a 6 33 0 0 0 0 0 0 0 0 a single vector, in that the vector contains the sum of scores across all of the conditions for
317 46 0 0 0 0 0 0 0 0 each subject. Unfortunately, this method of ‘coding is not useful for conducting single-df
8 40 0 0 0 0 0 0 0 0 comparisons, which, for most researchers, is the primary purpose of an experiment and its
9 |29 0 0 0 0 0 0 0 0 analysis,
10 2] Y 0 0 0 0 0 0 0 .8 This statement is correct only when the homogeneity assumption is reasonably met by the
11 30 0 0 0 0 0 0 2 0 data. With heterogeneous variances, special error terms are recommended (see Keppel,
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terms is based only on the data contributing to the particular comparison under

study.

Computational Procedures: ANOVA

A single-df comparison A,,,. reflects the variability associated with the difference
between two means. The error term for the mean square based on this difference
reflects the degree to which individual subjects deviate from this average difference.
This particular variation is represented by an interaction, A, ,mp. X S, which, as we
have already noted, is not necessarily estimated by the overall A x-S interaction, We
will consider the analysis of two comparisons, one a comparison between two
means (physical science and social science) and the other a complex:comparison
(combined sciences and history).

The Computational Formulas. We begin with the comparison between physical
science and social science. Consider the data arrangement in Table 16-9. The
original AS matrix of Y scores is presented on the left. In the middle are the scores
for each subject that will actually enter into this analysis, namely, a score obtained

Table 16-9
Calculation of a Separate Error Term
AS Matrix Comparison Matrix Calculations
Physical  Social
Subject | @, a4, a3 | Science Science | Difference Ss
1 53 47 45 53 47 6 18.00
2 49 42 41 49 42 7 24.50
3 47 39 38 47 39 8 32.00
4 42 37 36 42 37 5 12,50
5 51 42 35| 51 42 9 40.50
6 34 33 33 34 33 1 .50
7 44 13 46 44 13 31 480.50
8 (48 16 40 48 16 32 512.00
9 35 16 29 35 16 19 180.50
10 18 10 21 18- 10 8 32.00
11 32 11 30 32 11 - 21 220.50
12 27 6 20 27 6 21 220.50
Mean: | 40.00 26.00 14.00
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after the physical science lecture and a score obtained after the social science
lecture. Consider this comparison matrix carefully. What we have is a matrix of
scores that could be viewed as the results of a “miniature” (4 x S) design with only
two levels. If in fact there were only two levels, we could calculate the standard
sources of variance-—an A, an S, and an A x § interaction-—using the formulas
from Sec. 16.2. The F test would consist of dividing the treatment mean square
MS,, by the error term, MS , . 5. This is exactly what we will accomplish in the analysis,
except that the “reatment effect” is really the comparison effect (Ms,,, ) and
the “error term” is an interaction based only on the data involved in the comparison
(MS,,.,, xs)-

There are several ways to calculate the necessary sums of squares. The method
we will illustrate focuses on the difference score for each subject. The differences
are given in the right-hand portion of Table 16-9. For the first subject, the difference
is 53 — 47 = 6; for the second subject, the difference is 49 — 42 = 7; and so on.
The bottom row of the table gives the means for the two treatment conditions and
the difference between them,; that is,

¥ = 40.00 — 26,00 = 14.00
The first step is to ransform these various differences into sums of squares.
The sum of squares for any given subject is given by -

(Diff)?
M,wkao!m.ne:.. = M Ah.vw

(16-3)

(In 2 moment, we will eventually combine the sums of squares from all the sub-
jects.) Next, we calculate the comparison sum of squares S, , using the for-
mula originally presented in Chap. 11: i

2

% ()2 (16-4)

mm?.é =

The interaction sum of squares SS,,_, . « s is obtained by subtracting the com-
parison sum of squares S5, from the sum of the subject sums of squares. That
mmq
(Diff)*
MMLS!? x§ = M )] ADVN - .w,wigai, (16-5)

(Although we will not demonstrate it here, this sum of squares is identical to an
“SSaxs" obtained by treating the comparison matrix as an actual within-subjects
design.) .

Before we turn to the numerical example, let us look at the operations specified
in Eq. (16-5). Consider the first quantity on the right side of the equation. This

v
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is a composite sum of squares that combines the treatment sums of squares for
the individual subjects. This quantity reflects the difference between the two treat-
ments and the unique way in which each subject responds to the two treatments
(the interaction). To make this sum useful as an error term, we must remove the
systematic source of variability—the weatment difference—from the composite sum
of squares. This is precisely what we accomplished by subtracting S, in
Eq. (16-5).

A Numerical Example. We will illustrate the calculations with the data in Table
16-9. Using Eq. (16-3), we find the comparison sum of squares for the first subject
to be:

_ ©*
Steamp-torn =TT E (D74 07

The sums of squares for all 12 subjects are given in the final column of the table.
The sum of these individual sums of squares is

= 18.00

E5S gomp. tors; = 18.00 + 2450 + - -+ 4 220,50 + 220.50
= 1774.00

For the comparison sum of squares, we substitute the difference between the two
means in Eq. (16-4) and find

_ (12) (14.00)*
DT+ (DT + (02

Finally, from Eq. (16-5), we obtain
5 huomp. x5 = 1774.00 — 1176.00 = 598.00
The formula for the F is given by Eq. (16-6):

55 heomp. = 1176.00

Foppp, = o omp. (16-6)
comp Km;a,ssxm

Since there is 1df for the comparison, MS,_, = 1176.00. The degrees of freedom
associated with the error term are given by Eq. (16-7):

dfy,,py. xs = Wfy,,,) dfe
=D6E-D=s~-1 16-n

For the present example, df,, «s=12~1=1], and MS, x5 =
598.00/11 = 54.36. Substituting in Eq. (16-6), we find

£ 117600
comp- 5436

= 2163
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which is significant. (As a reminder, this F is evaluated with dfpum. = 1 and
dfzenom. = 11.) You should note that the error term for this comparison does not

3 . equal the error term for the omnibus F test (MS, .5 = 48.52).

A Second Numerical Example. For a second example, we will compare the aver-
age of the two science conditions with the history condition. Table 16-10 presents
the relevant comparison matrix. Entries in the first column consist of each subject’s
average vocabulary score obtained following the two science lectures; entries in
the second column consist of each subject’s score obtained following the history
lecture. The difference scores and sums of squares based on these differences are
found in the last two columns of the table. For the first subject, the average science
score is (53 + 47)/2 = 50.00 and the history score is 45.00-—a difference of 5,00
words. If we translate this difference into a sum of squares, we find
(5.00)2

MM;S!??:_ = A.TWVN..T A..T.an + A|c~ = 16.67

The sum of the sums of squares for all subjects is:

TS gy tors; = 1667 + 1350 + - + 4817 + 817
= 48737

Table 16-10
Calculation of a Separate Error Term

Comparison Matrix Calculations
Combined
Subject | Science  History | Difference 5
1 50.00 45 5.00 16.67
2 45.50 41 4.50 1350 -
3 43.00 38 5.00 16.67
4 39.50 36 350 817
5 46.50 35 11.50 88.17
6 3350 33 50 17
7 28.50 46 | —1750 20417
8 32.00 40 -8.00 4267
9 25.50 29 —3.50 817
10 14.00 21 —7.00 3267
.11 21.50 30 -850 48.17
12 16.50 20 —3.50 817
Mean: 33.00 34.50 —1.50
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Using the data at the bottom of Table 16-10, we find: '

S, - (12)(~150)%
Aeome- “ (1 DTH (D2 + (- D)7

The sum of squares for the error term is

= 18.00

S5 doomp. x5 = 48737 — 18.00 = 469.37

Continuing with the calculations, we find MS,_, = 1800 and MS 4y x5 =
46937/11 = 42.67. The F,,,,,. is not significant (18.00/42.67 = 42).

Comment. It is interesting ‘that the two sums of squares we obtained for error

terms for the two comparisons add up to the sum of squares for the eror term
from the overall analysis. That is,

598.00 + 469.37 = 1067.37

which, except for rounding ervor, equals SS, .5 (1067.33). This has occurred only
because the two comparisons were orthogonal, 2 property that extended to the two
error terms, which is why the two sums of squares totaled 55, 5. .

You may have noticed that the two error terms in our hypothetical experiment
differed by a relatively small amount (54.36 versus 42.67). In actual experiments,
however, sizable differences do occur; and even small differences, such as these,
can affect the outcome of a statistical test. For these reasons, we recommend that
you use separate error terms for the different comparisons of interest unless there
is convincing evidence that such a procedure is not necessary.

Computational Procedures: MRC

The analysis of single-df comparisons with MRC is a relatively simple matter and
is most easily conducted by adopting a strategy of assuming that an omnibus
analysis is necessary (though in fact it is not), coding for comparisons and subjects,
and creating vectors for interactions of treatments with subjects. As you know, the
variation associated with the comparison itself is reflected in the zero-order corre-
lation between Y and the appropriately coded comparison vector. As we will show,
the variation associated with an A,,,,. X S interaction is reflected in the subset of
the interaction vectors formed by cross-multiplying the particular comparison vector
with all the individual subject vectors.

Consider the vectors in Table 16-11. Vector 1 (A1) specifies the comparison
between the two science conditions. The vectors in columns 2 through 12 are the
interaction vectors found by cross-multiplying the numerical values of vector Al
with corresponding values from all the subject vectors presented in Table 16-6.
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This chapter is included to give you a glimpse at the complexity of higher-order
factorial designs and an appreciation of their explanatory potential. Some of you
may find this material too abstract and too advanced at the present stage in your
wraining.! We suggest that you view this chapter as a sample of the capabilities of
experimental design, rather than a complete treatment of the subject. Qur goal is
to indicate how the principles underlying simpler experimental designs covered in
the preceding chapters apply to more complex designs. We hope that this chapter
will give you a perspective from which you can design more satisfying and ambi-
tious projects in your future research efforts.

Factorial designs are easily expanded to form higher-order factorial designs—
designs that incorporate more than two independent variables. The higher-order
factorial designs we will discuss in this chapter all have the same defining property:
they include all possible combinations of the levels of the factors in the experiment.
A 2 x 3 x 2 design, for example, includes a total of (2)(3)(2) = 12 treatment
conditions formed by crossing the two levels of factor A with the three levels of
factor B and then crossing the resulting six combinations with the two levels of

factor C. Designs in which we explore all possible combinations are called com-

pletely crossed factorials.?

With an increase in the number of independent variables comes 2 marked
increase in the amount of information that you can obtain. That is, while the overall
analysis of higher-order factorials still consists of the examination of main effects
and interactions, you will find that they offer more main effects and interactions to
study. Moreover, the complexity of the interactions increases as well. In a moment,
we will consider the nature of the information that higher-order factorial designs
provide.

This chapter can only scratch the surface of the topic. As we have indicated
already, our intent is to show how the principles we considered in our discussions
of the analysis of one- and two-factor designs generalize to the analysis of higher-
order designs. At some point you will probably have to consult more compre-
hensive discussions of this material, but at least you will have some appreciation
of how the analyses of complex designs are derived from the analyses of simpler
ones.

1 Note to instructors: The material in this chapter may be omitted without affecting your
students’ understanding of the remaining chapters.

2 Incomplete factorials, in which not all possible combinations are included, are relatively
uncommon in the behavioral sciences. For a discussion of these designs, see Kirk (1982,
PPp. 489~710) and Winer (1971, pp. 604—684).
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19.1 THE COMPLETELY RANDOMIZED THREE-FACTOR DESIGN

We will consider briefly the design and analysis of the three-factor design. As we
have indicated, the three-factor design is made up of all possible combinations of
the levels of three independent variables. For this discussion, we are assuming that
subjects are randomly assigned, in equal numbers (s), to the (@) (b) (c) different
treatment conditions. Although repeated measures can easily be introduced into
this design, they complicate the evaluation process considerably, because they call
for a variety of error terms to conduct the different statistical tests. In comparison,
the evaluation process for the completely randomized three-factor design is rela-
tively simple, since only one error term is needed to conduct these same tests. It
is important to note, however, that all three-factor designs supply the same type
of information, which means that we can focus on the information provided by
these designs without worrying at this time about the complications created when
repeated measures are introduced. We discuss within-subjects designs in Sec. 19.3.

The Design

The three-factor design is a natural outgrowth of the two-factor design. To illus-
trate, we will start with the 3 x 2 factorial we used to introduce the A X B design,
an experiment consisting of the three types of lectures (physical science, social
science, and history) and two methods of presentation (computer and standard).
Suppose we add a third independent variable (factor C)—a developmental variable,
age—consisting of ¢ = 2 levels, fifth-grade and eighth-grade children. This design
is presented in Table 19-1. You will note that the original A x B design is repre-
sented twice in this three-factor design, once in conjunctdon with level ¢; (fifth
grade) and once with level ¢, (eighth grade). Taken as a whole, the complete
design is made up of all possible combinations of the levels of the three inde-
pendent variables.

The A x B x C Interaction

The one new concept we introduced when we first discussed the two-factor design
was, of course, the A x B interaction. No new concepts are introduced with higher-
order designs, although the interactions may be of greater complexity. We will
illustrate this point with the A x B x C interaction.

All interactions may be defined in terms of simple effects. As a reminder from
the two-factor case,

An A x B interaction is present when the simple effects of one of the

. independent variables are not the same at all levels of the second
independent variable.
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t The A x B x Cinteraction is defined in an analogous fashion except that we focus
£ on simple interactions rather than on simple effects. A simple interaction is the
interaction of two of the independent variables with the third variable held constant.
i Translated to the present context, the presence of an A x B x C interaction would
mean that the interaction of factors A and B for the fifth-grade students (level )
is different from the corresponding interaction for the eighth-grade students (level
¢,).* In words, then, ]

(ay) l
|

(az)

Social
Science History

An A x B x C interaction is present when the simple interactions be-
tween two of the independent variables are not the same at all levels
of the third.

We can often comprehend interactions more easily if we plot the means on
a graph. Consider first one possible outcome of this experiment, which is presented
in the upper half of Fig. 19-1. Compare the simple interaction on the left (fifth
grade) with the simple interaction on the right (eighth grade). Remember that if
the two seem to be different, an A x B x C interaction may be present, whereas
if they appear to be the same, there is probably no interaction present. Of course,
we would eventually base our judgment on the outcome of an appropriate statistical
test. For the moment, however, let us just examine the data informally, with an
eye toward understanding the concept. The graph on the left suggests that there o
is an interaction between lectures and methods for the fifth-grade children, while Lt |
the graph on the right reflects no interaction whatsoever. Since the two simple
interactions are not the same—we find a sizable interaction on the left and no &
interaction on the right—we would conclude that an A x B x C interaction is )
present. The next step would be a statistical test that assesses this difference. bl

In contrast, consider the outcome depicted in the lower portion of Fig. 19-1.
In this case, apparently, the same interaction found with the fifth-grade students -
is also found with the eighth-grade students. This suggests that the two simple o w4,
interactions are roughly alike and that 2 statistical test would be likely to reveal
that an 4 x B x C interaction is not present.

Eighth-Grade Students (c,)

Physical

Science
(a 1)

Computer (by)
Standard (b,)

Table 19-1
An Example of a Three-Factor Design

(a)

Social
Science History
(a;5)

Fifth-Grade Students (c,)

Physical
Science
(al)

Sources of Variance

The standard analysis of the three-way factorial examines three types of treatment e
effects. One of these is the A x B x C interaction, of course, which is based on all ) e 4
the individual means of the diffefent treatment conditions. The other two represent Wl

Computer (b,)
Standard (b,)

* The A x B x Cinteraction is defined in terms of the simple interactions created by the com-
bination of any two of the three independent variables. We chose thesimple A x B interaction.
We could just as easily have chosen the simple A x C interaction at the two levels of factor
B or the simple B x C interaction at the three levels of factor A.
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Figure 19-1 Two possible outcomes of the three-way factorial. The upper graph
&mm_»vm an A x B x C interaction, while the lower graph displays no A x B x C
interaction.

sources created by averaging or collapsing over some of the treatment conditions.

More specifically, we could disregard factor C completely by combining the data

from the fifth- and eighth-grade students. This would leave us with what amounts
to a two-factor design and an A X B interaction. Alternatively, we could combine
the data from the two levels of factor B (computer and standard presentation) to
create an A x C design and an A x C interaction and consequently disregard mode
of presentation; or we could combine the data from the three levels of factor A
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(physical science, social science, and history) to create aB x Cdesignand2B x C
interaction, ignoring type of lecture. Finally, we could examine any of three main
effects—A, B, and C—by pooling the data over the levels of the other two inde-
pendent variables. The A main effect, for example, is based on the overall means for
the three lectures obtained by averaging the data for all levels of factors B and C.
The interpretation of the results of this analysis generally begins with a test
of the A x B x C interaction, which we have indicated at the top of Fig. 19-2.
A significant three-way interaction means that any effects based on data that are
collapsed over the levels of one or two independent variables may provide a dis-
torted picture of the influence of the three factors on the dependent variable.
Consequently, the next step is to turn to special analyses that help to identify the
sources of the significant interaction. We will discuss these analyses in Sec. 19.2.
On the other hand, a nonsignificant interaction indicates that it is “safe” to continue
the standard analysis by examining the data with one of the factors removed or
disregarded. At this point, then, the analysis would focus on all possible interactions
between two of the factors—A x B, A x C, and B x C—ijust as if they had been
produced from actual two-factor designs. This step is also shown in Fig. 19-2.
From now on, the analysis should be familiar. We test each of the interactions
for significance. If an interaction is significant, we try to discover the differences
responsible for it and pay little attention to the main effects. On the other hand,
a main effect is of interest for a factor that is not involved in a significant two-way
interaction. For example, if only the A x B interaction is significant, we can safely
examine the C main effect because factor C is not involved in an interaction. If

Isthe AxBx C
interaction
significant?
No | Yes
Are any of Conduct additional
the two-way | Yes lyses designed
interactions to determine the
significan? sources of the
! interaction

]

Analyze the

main effects

Figure 19-2 Analysis of a three-factor design
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another interaction is also significant, either A x C or B x C, none of the main
effects are left uncontaminated by interaction*

Using ANOVA to Perform the Overall Analysis

The overall analysis represents a simple extension of the operations we followed
in the analysis of single-factor and two-factor designs. We calculate sums of squares
from basic ratios that are based on the various totals and subtotals we obtain when
the data are collapsed over subjects and over the levels of the three independent
variables. Degrees of freedom for the three main effects are equal to the number
of levels less 1, while the df for interactions are found by multiplying the df's
assoctated with the factors specified by the interaction. The df for the B x C inter-
action, for example, are

dfgxc =D =~ 1)(c-1)
while the df for the A x B x C interaction are
dfyxpxc = df (dfy) W) =G@-DE-1(c-1

The mean squares are calculated in the usual fashion by dividing SS’s by the

appropriate df's. The error term for this analysis is based on the within-group
variances obtained for the separate treatment conditions, which are pooled and
averaged over all the (a) (b) (c) treatment conditions,

Using MRC to Perform the Overall Analysis

The key to the MRC analysis, as in other designs, is the creation of vectors designed
to represent the three main effects. As you know, the number of vectors required
Is, in essence, specified by the df associated with each source of variability isolated
in the analysis. To illustrate, we will start with the main effects. In the present
example, we would need two vectors to capture the A main éffect (Al and A2),
onme to capture the B main effect (B1), and one to capture the C main effect (C1).
In general, vectors representing interactions are formed by cross-multiplying the
vectors of the relevant main effects. For the 4 x C interaction, for example, the
cross multiplication would involve the two vectors associated with the A main
effect and the single vector associated with the C main effect, creating A1C1 and
A2C1. Together, these two vectors capture the variation due to the A x C interac-
tion. Similarly, we represent the A x B interaction with two interaction vectors,
A1B1 and A2B1, and the B x C interaction with one interaction vector, BIC1.

* The logic of this analysis strategy is covered more fully in Keppel (1982, PP 295-297).

-
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Finally, we represent the A x B x C ‘interaction with interaction vectors
created by the cross multiplication of all possible combinations of the three main-
effects vectors. There are two such interaction vectors in this example,

AlB1C1 and  A2BIC1

(How we multiply these main-effect vectors will be discussed in Sec. 19.2) The
squared multiple correlation coefficients involving the dependent variable Y and
the relevant sets of vectors represent the proportions of variability associated with
the different factorial effects. The df for each correlation are determined by the
number of vectors required to define the particular effect. The residual variation is
obtained by subtracting R}, , which is the squared multiple correlation coeffi-
cient between Y and all the factorial vectors, from 1. That is,

Rimaz. =RE4+ Ry REc+RE 4xp + RE 4xc + REpxc+ R} 4xmxc

19.2 Um.n.é ANALYSIS OF THE A x B x C INTERACTION

Two general techniques are available for determining the factors responsible for
a significant A x B x C interaction. These are the analysis of simple effects and the
analysis of interaction comparisons—both variations of the same techniques we used
to analyze the A x B interaction in Chaps. 14 and 15. We are not able to cover
these procedures in detail, but we will emphasize their nature and form. A com-
prehensive discussion of this material may be found in Keppel (1982, Chap. 14).

Analysis of Simple Effects

All interactions may be expressed as differences in simple effects. For the A x B
interaction, for example, the differences of interest to us are in the effects of one
of the independent variables at different levels of the other. For the complex or
higher-order A x B x C interaction, on the other hand, we are interested in the
differences in the interaction of two of the factors at different levels of the third,
Once we detect an interaction, an obvious next step is to examine the simple
effects themselves in an attempt to establish its exact nature.

The simple effects of any interaction are revealed by subdividing the original
factorial design into a set of less complex designs, each of which defines a different
simple effect. You will recall from Chap., 14, for example, that we can uncover the
simple effects of the A x B interaction by analyzing a set of component single-factor
designs in which we vary one of the independent variables while holding the other
constant. We might examine the effects of factor A at level by, at level b,, and so
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on, or the effects of factor B at level a,, at a,, and so on. By transforming a more
complex experiment (in this case, the two-factor design) into a set of less complex
experiments (component single-factor designs), we are able to discover the ways
in which the simple effects differ from one another.

We follow this same general procedure with the three-factor design and the

analysis of the A x B x C interaction. We transform the more complex experiment

(the three-factor design) into a set of less complex experiments, which in this
case consist of component two-factor designs. These latter designs involve the
manipulation of two of the independent variables with the third held constant.
There are three possibilities;

An A x B design at level ¢, at level c;, and so on
An A x C design at level b,, at level b,, and so on
A B x C design at level a;, at level a,, and so on

A significant A x B x C interaction means that the simple interactions are not the
same, and this is trye for any one of these sets of component factorial designs,

Most researchers have a preferred way of expressing the A X B x Cinteraction

and thus will usually examine only the sets in which they are most interested if
the interaction proves to be significant. Assuming that the A x B x C interaction
reflected in the data presented in the upper portion of Fig. 19-1 is significant,
we would probably look at the simple interaction of lectures (factor A) and pre-
sentation (factor B), first for the fifth-grade students (level ¢;—the display on
the left) —and then for the eighth-grade students (level ¢,—the display on the
right). We would choose this alternative because of the way we conceptualized the
experiment—the joint manipulation of lectures and presentation at two different
age levels,

An analysis of these simple interactions would probably reveal a significant
interaction of lectures and presentation for the younger students, but no interac-
tion for the older ones. If this were the case, we would pay little or no attention to
the simple interaction for the older students and would concentrate our efforts on

analyzing the simple interaction for the younger students. Thus, we would probably

consider additional analyses in an attempt to identify the factors contributing to
the significant interaction of lectures and methods of presentation for the fifth-grade
. students. At this point, the analysis exactly resembles the analysis of the simple
effects of a significant interaction in an actual two-factor design. Thus, we might
look at the effects of the three lectures first with the computer presentation and
then with the standard presentation. If either of these effects is significant, we
could examine meaningful single-df comparisons, such as the difference between
the two science conditions and the difference between the combined science condi-
tions and the history condition.
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Is the simple

interaction
significant?
No | Yes
Is the wnn,mzn effect
of one of the factors
significant?

No | Yes

Stop Test single-df
comparisons

Figure 19-3 Analysis of the three-way interaction.

While this process may sound complicated, it does represent a consistent
pattern in which the discovery of a significant higher-order effect is followed by
the analysis of a relevant simple effect As a summary of this approach to the
analysis of the three-way interaction, we could say that

A significant A x B x C interaction is followed by an analysis of simple inter-
actions, for example, the A x B interaction for fifth-grade students and
for eighth-grade students.

A significant simple A x B interaction is then followed by the analysis of
the simple effects of this interaction, for example, the effects of the dif-
ferent lectures (A) for the fifth-grade students under the two methods
of presentation.

A significant simple effect of factor A is then followed by an analysis of
meaningful single-df comparisons.

These steps are also diagramed in Fig, 19-3.

The ANOVA Approach. As you have seen, the simple interaction effects of the
A x B x C interaction are interactions obtained from component two-factor ex-
periments. What this means is that you may calculate the sums of squares required
for the analysis by isolating the data matrix of interest and then applying mwﬂu:_mm
appropriate for an actual two-factor experiment. From this point on, you will be on
familiar ground; you can take advantage of the formulas we covered in Sec. .I.N.
The only change is in the error term for the analysis. For all the simple interactions,
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the error term would come from the overall analysis of the three-factor design and
would be MSg,,pc, which is based on within-group variability pooled over the
(@) (b) (¢} treatment groups.

The MRC Approach. You may easily accomplish the analysis of simple effects
with MRC by creating special vectors that reflect the desired simple effects. For
the simple A x B interaction at level ¢,, for example, you would start with the
vectors defining the A x B interaction and then modify them for the analysis by
assigning Os to all observations at all levels of factor C not involved in the analysis
(level c, in this case). You would create the vectors for the A x B interaction at

level ¢, by ‘starting with the same original interaction vectors, but modifying them .

by assigning Os to all observations at level ¢;. The error term comes from the
overall analysis of the entire factorial design, Mean R§ s, ,gc. For details concerning
the analysis of the simple effects, see the discussion in Sec. 143,

Analysis of Interaction Comparisons

A second major way of analyzing interaction consists of creating a number of
smaller factorial designs by transforming one or more of the independent variables
into a form that reflects single-df comparisons. This transformation is possible, of
course, only when a factor consists of more than two levels. For the example in
Table 19-1, only factor A—with the levels consisting of three different lectures—
qualifies as a candidate; the other two factors each consist of two levels.

Table 19-2 illustrates two component factorial designs created from single-df
comparisons involving factor A. The analysis in the top half of the table is a three-
factor design consisting of a comparison between the two science conditions
(Asmp. 1) and the other two factors (method of presentation and grade level). The
analysis in the bottom half is a three-factor design consisting of a comparison
between the combined science conditions and the history condition (Acomp, 2) and
the other two factors. The focus of both of these analyses-would be the 4, x
B x C interactions.

It is important to appreciate the value of this type of analysis. A significant
A X B x C interaction found in the overall analysis does not indicate what aspects
of factor A are critical In contrast, the two component factorials provide a more
insightful view of the interaction of the three factors, A significant 4,,,,,, x B x C
interaction in the first case would bring attention to the differences between the
two science lectures; a nonsignificant interaction would imply that any differences
between the two science lectures have little effect on the interaction of the three
factors. By the same token, the second case focuses attention on differences between
science and history lectures, with no differentiation made between the two science
conditions.
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Table 192
Two Examples of Interaction Contrasts

Fifth Grade Eighth Grade
Physical  Social | Physical  Social
Science  Science Science  Science
Computer Computer
Standard Standard
Fifth Grade Eighth Grade
Combined Combined
Science  History . Science  History
Computer Computer
Standard Standard

Three-factor interaction comparisons associated with a single df are called,

like their two-factor counterpart, interaction contrasts. They are produced from
what is conceptually equivalent to a2 x 2 x 2 design. Such interaction contrasts
are valuable because the three-way interaction contrast (2 x 2 x 2), which is
associated with 1 df, takes the analysis to the basic level since it cannot be divided
into additional component factorials. Both of the examples in Table 19-2 are in-
teraction contrasts.

Other types of interaction comparisons are possible in which some, but not all
of the factors are represented by single-df comparisons. For example, suppose we
have a3 x 3 x 3 factorial. If only one of the factors (we will choose A arbitrarily)
lends itself to analytical teatment, the analysis would consist of a number of
2 % 3 x 3 component factorials of the form A, X B x C. If two of the factors
(A and B) are transformed into single-df comparisons, the analysis will consist of
anumber of 2 X 2 x 3 component factorials of the form A,,,,,. X B.ypp. X C. These
various possibilities are discussed in detail by Keppel (1982, pp. 315-320).

The ANOVA Approach. We will concentrate our discussion on the analysis of

interaction contrasts. The only new operation is the caleulation of the contrast

itself (4 xc), which may be obtained directly from a systematic layout of the
means. Suppose we were interested in the three-way interaction of the two science
conditions, the two methods of presentation, and the two grade levels. We would
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start by forming a 2 x 2 x 2 matrix corresponding to this interaction contrast.
This we have accomplished in Table 19-3, using the data appearing in the upper
portion: of Fig. 19-1. You will recall that a three-way interaction is defined as the
presence of differences in the interaction of two of the independent variables over
the levels of the third independent variable. All that we need to do, then, is to
compare the simple interaction of two of these factors at the two levels of the
third factor.

The 2 X 2 matrix on the left in Table 19-3 provides information concerning
the interaction of the two science lectures with the two methods of presentation
for the fifth-grade students, while the matrix on the right provides corresponding
information for the eighth-grade students. A value for each of the two interactions
may be obtained simply by calculating the difference between the two means in
each row and then subtracting the differences for each simple interaction. In this
example, " !
¥4 Batovet e = 6.00 — 22,00 = — 16,00
U axBattevetc; = 14.00 — 14.00 = 0.00

The value of —16.00 for the interaction at ¢, indicates that there is an interaction
between the two lectures and the two methods of presentation for the younger
children, while the value of 0.00 indicates the complete absence of such an inter-
action for the older children. (A value of zero is highly unlikely, of course, because
of the inevitable operation of chance factors.) The fact that the two “lecture” x
“method” interactions are different (— 16.00 versus 0.00) means that a three-way
interaction is present. The value of this interaction contrast is

.\v;xuxn = QV; xBatlevel ¢) ~ %;xw:_e;_sv
= (—16.00) — (0.00) = —16.00
The sum of squares associated with this value is obtained by substituting in
a familiar formula, namely,
MML 5 c - Anv Q\nhxuxnv».
comp. % Beomp. X Ceomp: T [E ()T ()3T (07

where s = the sample size

Viax pxc = the interaction contrast
¢; = the coefficients associated with factor 4 (1, — 1, 0)
¢; = the coefficients associated with factor B (1, —1)
G = the coefficients associated with factor C (1, —1)

This sum of squares is based on 1 df, and the. error term comes from the overall

analysis.

Table 19-3
Calculating an Interaction Contrast

14.00
14.00

biﬁ’erence

Social
Science
18.17

3383

Eighth Grade

47.83
3217

Science

Physical

Computer
Standard

6.00
22.00

Difference

Social
40.00
12.00

Fifth Grade

46.00
34.00

Physical
Science  Science

Computer

Standard
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In all completely randomized designs, the within-groups errof term is used
to assess the significance of all treatment effects extracted in the analysis.5 As you
_will see shortly, the same sort of error term will also be appropriate in mixed
designs when the treatment effects are based entirely on between-S differences,

“Pure” Within-S Designs

There is a general principle that lies behind the n.n.o_. terms required for “pure” .

within-S designs. This rule may be stated as follows:

‘The error term for evaluating any source of variability in a “pure”
within-S design is based on the interaction between the factor or factors
contained in the source and subjects.

. - Let us see how this rule functions.in several common examples of “pure” within-$

designs.

Single-Factor Within-S Design.  You have already seen in Chap. 16 how this rule
applies to the analysis of the single-factor within-S design. As a reminder, the error
term for evaluating the overall effects of factor A is based on the interaction between
factor A and subjects—the A x S interaction. You will also recall that the evaluation
of single-df comparisons generally requires specialized error terms, unique to each
comparison. If we substitute comparison for source, the rule applies to the analysis
of these single-df comparisons as well. That is,

The error term for evaluating a single-df compatison is based on the
‘interaction between the comparison and subjects,

Two-Factor Within-S Design. We will now see how the rule generalizes to factorial

designs. Let us first look at a factorial design with two within-$ factors, Space does

not permit 2 formal discussion of the analysis of this particular design, but exam-
ples of the design are often found in the research literature. This design is a two-
way factorial, symbolized as an (A x B x S) design, in which all subjects receive
all the (a)(b) treatment conditions. The order of the treatments is usually ran-
domized or varied in some systematic fashion designed to minimize undesired se-
quence effects.

% If heterogeneity of within-group variances is present, it may be necessary to-use specific
erTor terms to evaluate treatment effects based on portions of the data, e.g, simple effects
and interaction comparisons. In these-cases, a useful procedure is to base the etror term on
only those observations involved in the calculation of the effect under consideration.
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The standard sources of variability examined in the overall analysis of this
(or-any) two factor design are the two main effects (A and B) and the A x B inter--
action. In the (A x B x S) design, these treatment sources are based on different

, . configurations of the within-S factors, For example, the levels of factor B are 855

- disregarded in-the calculation and assessment of the'A main effect: for analysis.
_purposes, the configuration of the data is equivalent to a single-factor within-§

.. design involving the manipulation of factor A. Similarly, the levels of factor A are

totally disregarded in the calculation and assessment of the B main effect; the con-
figuration of the data in this case is equivalent to another single-factor within-$
design involving the manipulation of factor B, Finally, both within-S factors are
involved in the calculation and assessment of the A x' B interaction. Applying the
rule to each of these sources produces three different error terms:

The error term for evaluating the A main effect is based on the interaction
between factor A and subjects—thé A x S interaction.

. The error term for evaluating the B main effect is based on the interaction
between factor B and subjects—the B x $ interaction.
The error term for evaluating the A x B interaction is based on the interaction
between factors A and-B-and subjects—the A x B x S interaction.

In each case, Eﬁr the error term consists of the interaction of the within-S factor
(or factors) with subjects. The overall analysis is summarized in Table 19-5,

Three or More Within-S Factors. We are now in a position to describe the analysis
of “pure” within-S factorials with any number of independent variables: For the
overall analysis, all we need to do- is to apply the general rule for within-S error

Table 19-5
Standard Analysis of the (A x B x S) Design

Source df . Error Term
A a—1 AxS
B b—1 BxS
) s—1

AxXB  (@a-1DG-1 AXBxS

AxS @a-1DG6-1

BxS G-DG-1

AxXBxS @a-Dhr-DiG~1)
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terms to the specific design under consideration. That rule, to repeat, states that

The error term for evaluating any source of variability is based on an
interaction between the factor or factors contained in the sousce and
subjects,

To illustrate with the three-factor design,

The error terms for the main effects of A, B and C are Ax 5 B xS, and
C x 8, respectively.

The error terms for the two-way interactions of A X B,A x C, and B x C are
AXBxSAXxCxS, and B x C X S, respectively.

The error term for the A x B x C interactionis A x B x C x §.

The Mixed Two-Factor Design: A Review

The analysis of mixed factorial designs consists of a blending of a “pure” between-S
design and a “pure” within-S design. We discussed this blending of designs in
Chap. 17, when we considered the analysis of the mixed two-factor design in which
A is the between-5 factor and B is the within-S factor. (See Table 17-2, page 298,
for a summary.) We will review this analysis here to illustrate how the general
principles we have established for “pure” between-S and within-S designs apply
to the analysis of the mixed factorial design.

A convenient way to understand the analysis of a mixed factorial is to segre-
gate the treatment sources of variability into two categories, one representing the
between-S portion of the analysis and the other the within-§ portion. The normal
“yield” of treatment effects for a two-factor design—A4, B, and A x B—and their
error terms are listed in the first and second columns of Table 19-6, respectively.

Table 19-6
Error Terms for the A x (B x S) Mixed Factorial Design

Treatment Source Error Term

Between-Subjects Factor

A S/A
Within-Subjects Factor

B B x S/A
AXB B x S/A
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You should note that the treatment sources of variability have been segregated
into two categories. The first category consists of treatment sources based only on
the between-$ factor. In this particular design only one treatment source qualifies
for membership in this category, namely, the A main effect. The error term for this
between-$ source is the same error term that would be appropriate if the data
were collapsed over the withini-S factor, in which case the arrangement would be a
completely randomized design—a “pure” between-S design without repeated
measures. This operation would produce a single-factor experiment in which S/A,
the within-groups source, is the error term.

The second category consists of treatment sources based entirely or in part
on the within-5 factor in this design (factor B). There are two treatment sources
that involve factor B: the B main effect and the A x B interaction. The efror term
for either of these within-S sources is essentially the same term that would be
appropriate in a corresponding within-S design involving factor B. In the case of
a “pure” (B x S) design, the error term would be the B x S interaction. In the
mixed factorial, there is a different B x § intéraction for each of the independent
groups—a B X § interaction at level 4, (B x 5/A,), 2 B x S interaction at level a,
(B x S/A;), and so on. These are combined and averaged to form the MSgxs/a
that serves as the error term for both B and A x B in the mixed factorial design.

Mixed Three-Factor Designs

We will now apply this system to the analysis of mixed three-factor designs. There
are two types of mixed designs logically possible with three-factor designs. One
of these contains two between-S factors and one within-S factor. If we designate
factors A and B as the between-S factors and factor C as the within-S factor, we
can refer to the arrangement as an A x B x (C x $) design, the parentheses
indicating the portion of the design represented by repeated measures. The other
type of mixed design contains one between-S factor and two within-$ factors. If
we designate factor A as the between-S factor and factors B and C as the within-
S factors, we can refer to the arrangement as an A x (B x C x S) design, the
parentheses again indicating the portion of the design represented by repeated
measures.

Two Between-S Factors and One Within-S Factor. We can create an example of
the first type of design by bringing together three of the independent variables we
have introduced previously in our fictitious vocabulary experiment. Consider an
experiment in which factor A consists of three different lectures (physical science,
social science, and history) and factor B consists of two methods of presentation
(computer and standard). Subjects are randomly assigned to independent groups
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