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Abstract

This study focuses on conflation procedures to enhance classification accuracy for remote sensing-imagery. .In
this context, conflation refers to the merging of the most accurate portions of a set of classified images to yield a
result that is more accurate than any individual image. Two main types of conflation procedures are discussed. The
first is a heuristic approach based on if-then rules and the: second is based on statistical manipulation of
misclassification probabilities. The conflation procedures are tested on three classified images derived from a high-
resolution multispectral video mosaic using non-traditional classification methods. For these test.data;. conflation
vields improvements in classification accuracy of up to 15 percent.

Introduction

Classification is one of the most basic image processing
operations. It involves a transformation of pixel spectral
response values to extract various cover classes. Anenormous
volume of literature exists on this topic and numerous
classifiers have been developed and applied to remote sensing
imagery (Swain and Davis, 1978). For supervised
classification the best-known technique is Bayesian
classification based on the a priori assumption of a Gaussian
distribution of training data (Tou and Gonzales, 1974). For
unsupervised classification the main methods include
ISODATA and other types of clustering (Ocelikova, 1993,
1994). Significant progress in classification has also been
made using fuzzy logic and neural networks (Benediktsson
etal., 1990; Hepner et al., 1990). Neural-based classification
of remote sensing images has been reported in Heerman and
Khazenie (1992), Kulkarni (1994), Civco and Wang (1994),
Foody et al. (1995) and Carpenter et al. (1997). Applications
of fuzzy systems in pattern recognition can be found in
Wang (1990) and Pao (1989). A large number of experiments
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hae also been done with neuro-fuzzy approaches to
classification problems (Lin and Lee, 1996). Wilkinson
(1995) provides a methodological discussion about the future
of classification approaches in remote sensing.

In the present study, the classification problem is examined
with specific reference to high-resolution video imagery of
urban areas. Video is arelatively new data source for remote
sensing and has promise for a wide range of applications
(King, 1995). For urban applications, the main advantage of
video data is that it provides sufficient resolution for detailed
analysis of urban land cover. No existing commercial satellite
system provides multispectral imagery with a comparable
pixel size at a comparable price (although several systems
are slated for deployment in the near future).

High-resolution urban imagery presents some unique
challenges for the classification process. Such imagery
contains high within-class variation in spectral response as a
result of the small pixel size coupled with the spatial
complexity of the urban scene. Previous research shows that
as resolution is enhanced classification accuracy often declines
for classes exhibiting a high degree of internal variability
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(Markham & Townshend, 1981; Toll, 1985; Cushnie, 1987).
Traditional statistical classifiers are often unsuccessful in this
context due to the difficulty of discriminating among classes
in feature space (Veregin er al., 1995). Non-traditional
classifiers based on neural nets and fuzzy sets appear to be
only marginally better (Sincak et al., 1998).

In the present study we develop, implement and evaluate a
set of “conflation” procedures for enhancing classification
accuracy. We use the term conflation to refer to a process in
which alternate classifications of the same area are merged to
produce a hybrid image containing the most accurate portions
of the classification alternatives. This approach exploits the
fact that different classifiers often exhibit significant
differences in per-class accuracy statistics. Classes that are
inaccurately depicted on one image are often quite accurate
on another. By conflating a set of images, one extracts the
most accurate parts of each rather than searching for a single
optimal classifier that performs well for all classes.

The term conflation generally refers to any procedure
involving data merging and integration. For example, in
image processing one might integrate imagery with high
spatial resolution and imagery with high spectral resolution
to produce a hybrid image. In GIS (geographic information
systems) competing digital representations of the same features
might be evaluated with respect to their reliability in order to
produce a hybrid database from the most reliable pieces
(Goodchild, 1996). Our conflation approach has certain
commonalities with rule-based classification, except that we
use only internal evidence (i.e., misclassification patterns
present in the data) and do not rely upon expert knowledge or
ancillary data. There are also parallels with evidential
reasoning (Baldwin et al., 1995), and in particular the notion
of an “evidential interval.” The evidential interval describes
the disparity between the degree of support for a hypothesis
and the degree to which the available evidence does not
refute the hypothesis. In the context of image classification,
support for a given hypothesis is a measure of the probability
that a pixel belongs to a particular class; the approach can
therefore be used to assess support for competing hypotheses
(alternate class assignments for a pixel) based on one or more
data sources. Lee et al. (1987) provide a remote sensing
application in which this approach is used to provide
information about the composition of mixed classes.

In this study we apply conflation to a 1-meter multispectral
urban video image classified using several non-traditional
approaches — modular neural networks, fuzzy ARTMAP
and supervised classification based on fuzzy sets. We first
outline the results of these classifiers and then describe and
evaluate the conflation procedures.

Data

Our study area is portion of the Mud Run Creek urban
watershed in southwest Akron, Ohio (Figure 1). Our ultimate
objective is to use remote sensing to derive permeability
data for input to urban storm water runoff models (Veregin
et al., 1995). The first step in this process is accurate
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delineation of land cover types. The Mud Run Creek study
area is over 1000 ha in size and is composed of multiple land
uses ranging from open space to developed commercial and
residential zones. Subcatchments of the Mud Run Basin
were delineated on the basis of topography and linkages in
the storm sewer drainage network. Several subcatchments
were selected for detailed analysis and one of these,
subcatchment 24, is the focus of this study. The area of this
subcatchment is approximately 50 ha.

Video imagery was obtained on December 30, 1994, under
cloud-free skies at near-noon local time. There was no snow
cover and tree foliage was absent, giving an unrestricted view
of actual ground cover. Imagery was acquired with a color
video camera recording onto video tape. Altitude was
approximately 1625 m AGL, giving a pixel size of
approximately 1 m. Video imagery was post-processed by
digitizing the red, green and blue bands from selected video
frames, yielding a vector of RGB values in the range 0-255
for each pixel. Adjacent frames within subcatchment 24
were mosaiced digitally using ground control points derived
from large-scale engineering maps. At this stage, the imagery
was also resampled to produce exact 1-m resolution. The
digital mosaic was then cropped to conform to the dimensions
of subcatchment. The mosaic contains 420 rows and 1100
columns of pixels, giving 462,000 pixels in each band.

Land cover classes were identified in the field by the
investigators and their students. Representative samples
were marked on maps and then transferred to the video
image for digital delineation. Refinement of the classes,
including the addition of the class “shadow” and the merging
of spectrally-similar classes, was carried out at this time.
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Figure 1 Study area.



The final set of eight classes are as follows:
* Deciduous trees
» Grass
* QGrass-stubble
* Water
* Asphalt
» Concrete
* Shingle roofs
* Shadow

These classes are spectrally meaningful given the spatial
and spectral resolution of the sensing system and the degree
of spatial variability in the subcatchment. Note that these
classes are “physical” rather than “interpreted.” In other
words, the classes represent actual physical ground cover
types (such as “concrete”) rather than abstract categories
(such as “residential”) defined by particular mixtures of
physical cover types. Of course, any set of classes is
meaningful within a specific range of spatial resolution
levels. Our physical classes cannot be resolved with lower-
resolution satellite imagery, just as the interpreted categories
visible on satellite images cannot be resolved on 1-m video
data. Higher resolution would have allowed us to delineate
even more detailed classes but the classes we have extracted
are well-suited to our purposes.

Classification Procedures

Previous work (Veregin et al., 1995) indicates that
traditional classification methods do not yield high accuracy
levels for this dataset. We attribute this to the difficulty of
discriminating among classes in feature space due to high
within-class variation. Additional work (Sincak et al., 1998)
indicates that while non-traditional classifiers can yield
enhancements in classification accuracy, the level of
enhancement may be small in some cases. The goal of the
present study is to enhance the accuracy of these non-
traditional classifiers through the application of conflation
procedures. The classifiers examined are classification based
on fuzzy sets, fuzzy ARTMAP classification and modular
neural network classification. Classification based on fuzzy
sets — which is distinct from the more common “fuzzy
classification” — is adapted from speech recognition
applications (Pao, 1989). To our knowledge this technique
has not previously been used for image classification
purposes. The fuzzy ARTMAP classifier is a supervised
classification technique based on Adaptive Resonance Theory
and fuzzy sets. It is a model-free approach that generally
yields good results regardless of the statistical characteristics
of the input data (Carpenter et al., 1992). The modular
neural network method has been shown to be capable of
approximating complex discriminant functions separating
classes in feature space (Haykin, 1994). The theoretical
background for these classifiers and our adaptations of them
for remote sensing data are described in Sincak et al. (1998).

These classifiers were applied to the Mud Run video data
using a training set of 4880 pixels for the eight classes.
Assessment of classification accuracy was performed using

test sites randomly selected from each class. The selection
was done independently of training site selection. The test
sites were selected such that an equal number of observations
was obtained for each class. This stratified-random approach
ensures that the sample size for each class is large enough to
permit per-class accuracy assessment. All accuracy statistics
reported here are based on the classification error matrix.
Equations for overall accuracy (percent correctly classified
or PCC, as well as the kappa statistic) are presented elsewhere
in the literature. (For reviews see Veregin, 1989, and
Congalton, 1991.) For computations on test data, equations
for stratified-random sampling are used (Fitzpatrick-Lins,
1981; Stehman, 1996).

User’s and producer’s accuracies (UA and PA,
respectively) are also computed. These are per-class accuracy
statistics since they refer to only one class. UA is defined as
the number of correctly classified pixels in a class divided by
the total number of pixels assigned to that class. This gives
the probability that a pixel randomly selected from the class
on the image is in fact correctly classified. PA is defined as
the number of correctly classified pixels in a class divided by
the total number of pixels that are actually in that class. This
gives the probability that a pixel randomly selected from the
class on the ground is in fact correctly classified on the
image (Story and Congalton, 1986).

Classification Results

Classification Based on Fuzzy Sets

Figure 2 shows the classified image for subcatchment 24
and Table 1 show the classification error matrix for the test
sites. The weighted PCC is 71.3 percent and the weighted
kappa statistic is 0.625. UA ranges from a low of 54 percent
(shadow) to a high of 96 percent (water). Analysis of the
classification error matrix reveals frequent confusion between
the concrete, asphalt and shingle roof classes. This is perhaps
not surprising, as shingles often have an asphalt base and
since concrete and asphalt have a similar appearance,
especially after extensive road wear has taken place. There
is also evidence of confusion between water, deciduous trees
and shadow. Again, this result is not surprising as water and
shadow both have low reflectance values, and as areas of
deciduous tree cover contain a mixture of tree crowns
interspersed with shadows. Compared to traditional
classifiers, the fuzzy classifier produces superior results for
several classes, especially shingle roofs and grass.

Classification Based on Fuzzy ARTMAP Neural Networks

Figure 3 shows the classified image for subcatchment 24
and Table 2 gives the classification error matrix for the test
sites. The weighted PCC is 74.1 percent and the weighted
kappa statistic is 0.645. UA ranges from a low of 56 percent
(grass) to a high of 93 percent (grass-stubble). PA ranges
from a low of 52 percent (grass-stubble) to a high of 96
percent (water). Analysis of the classification error matrix
shows confusion between the concrete, asphalt and shingle
roof classes, between the water, deciduous tree and shadow
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classes, and between the grass and grass-stubble
classes. Per-class accuracy statistics are generally
higher tor the fuzzy ARTMAP approach than for

the supervised fuzzy approach.

Classification Based on Modular Neural
Network

Results for the modular neural network
classifier are quite poor. The classification error

matrix (Table 3) shows confusion between almost B vecivous [ IS™Y @B Ashar [ ) Shingle
every class, and the classified image (Figure 4) B Grass [ Water [ Concrete [ Shacow

exhibits high-frequency variation not present in
the other classified images or on the ground.
Overall accuracy 1s low (weighted PCC of 42.8
percent and weighted kappa of 0.299). PA ranges
from 4 percent (concrete) to 88 percent ( deciduous
trees), while UA ranges from 7 percent (concrete)
to 86 percent (water). Despite the poor
performance of this classifier we note that it yields
a higher UA for water (86 percent) than either of
the other two classifiers. Thus a pixel selected at
random from the water class on the modular neural
network image has a higher probability of actually
being water than a pixel selected from the water
class on any other image.

L —1 Grass/
stubble

- Water

Conflation Procedures

The three classified 1mages presented above
are different representations of the same true
spatial distribution of land cover classes in the
study area. The three images have similar gross
patterns of land cover, but crosstabulation of the
images indicates that pixel-by pixel agreement 1$

actually_/ quite low. The lowest agreement (between B Oecicwous [ 10™Y R asohar [ ] Shingle
supervised fuzzy and modular neural network [ lorass

B water [ concrete [ Shacow
gpproaehes) 1s only 4? pgrcer}t, and evel} for those Figure 4 Classified image for modular neural network classification (image 3).
images that are most similar (1.e., supervised fuzzy

and fuzzy ARTMAP approaches) agreement 1s

Table 1 Classification error matrix for classification using fuzzy sets (image 1).

only 74 percent.

To complicate matters, not all classes are Classified image: Rows Test sites: Columns
ponfayes Meds se ) - i i T i Grass s Water | Asphalt | Concrete e Shadow |Sum | UA
Even when overall accuracy is low, certain classes trees stubble roofs
may still be qmte accurate. This effef_:t 1S sho*ﬁtvn Deciduous o' F 0 1 1 0 . : 08 e
most conclusively by the fact that the image with lrees
the lowest overall accuracy (modular neural Grass | b4 210 3 | 0 0 0 0 |25 )0.84
network) I?as the hi ghest_LTA statistic for th.e water Grass- 0 | 17 0 0 0 0 0 18 0.0
class. Difterent classifiers produce different stubble P
accuracy levels for different classes. Use of overall Water | | ey et B U L4 92 WD
accuracy statistics (such as PCC and Kappa) can Asphalt | 0 | O | 2 U 17 3 3 0 |25 [0.68
mask significant variations in per-class accuracy Concrete | 0 | 0 | 1 0 4 18 6 0 |25 10,62
values and classifier performance. This suggests Shingle | o | 5 | 5, | § ; 4 4 | losa
that rather than searching for a single optimal roofs | | |
classifier that performs well for all classes, it ahpdow | 4.4 0 1 0 L 0] 0 0 0 13 | 1 1948
might be more fruitful to fuse those portions of Sum | 25 | 25 | 25 ] 2 | 25 25 25 | 25 200
each image that exhibit the highest accuracy to PA 1076 |0.84]0.68 | 095 | 068 | 072 | 0.56 | 0.52
yield a hybrid image that is more accurate than PCC=0.713 Kappa=0.625
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Table 2 Classification error matrix for fuzzy ARTMAP classification (image 2).

Classified image: Rows Test sites: Columns
Decid. Grass Grass- Water | Asphalt | Concrete Shingle Shadow |Sum | UA
trees stubble roofs
Deciduous| 1y g | 1 0 1 2 |27 |078
trees
Grass 1 20 11 0 1 0 1 2 36 [0.56
Grass-
stubble 0 1 13 0 0 0 0 0 14 10.93
Water 0 0 0 24 0 0 0 6 30 [0.80
Asphalt | 0 1 1 0 18 3 2 0 25 10.72
Concrete | 0 0 0 0 5 21 5 0 31 10.68
Shingle |5 1 5 L o [ o | o 1 16 | 1 |20 080
roofs
Shadow | 3 0 0 0 0 0 0 14 17 10.82
Sum 25 | 25 | 25 25 25 25 25 25 1200
PA 0.84 1080 052 1096 | 0.72 0.84 0.64 | 056
PCC=0.741 Kappa=0.645

Table 3 Classification error matrix for modular neural network classification

(image 3).
Classified image: Rows Test sites: Columns
Decid. Grass Grass- Water| Asphalt |Concrete Shingle Shadow |Sum [ UA
trees stubble roofs
Deciduous) 0y | 1 g | 3 | 1 0 5|33 067
trees
Grass 2 10 12 0 3 2 3 2 34 (0.29
Grass-
stubble 0 2 6 0 9 5 4 0 26 10.23
Water 0 0 0 18 0 0 0 3 21 [0.86
Asphalt | 0 3 3 0 2 0 1 0 9 (0.22
Concrete | 0 4 1 1 0 1 4 3 14 {0.07
Shingle | 5 15 | 2 Lo | 1 10 5 3 |23 Jo22
roofs
Shadow | 1 3 1 3 9 6 8 9 40 10.23
Sum 25 | 25| 25 | 25 25 25 25 25 1200
PA 0.88 1040 0.24 | 072 | 0.08 0.04 0.20 | 036

PCC=0.428 Kappa=0.299

any single image. We refer to this process as conflation. The discussion
below focuses on two major types of conflation, which we call “heuristic”
and “probabilistic.”

Heuristic Conflation

The simplest conflation procedures involve simple if-then rules
extracted from patterns of misclassification for a set of classified
images. The general procedure is as follows.

» First, a frequency distribution of misclassification patterns is
generated. A misclassification pattern is of the form [ccpenc, €]
where c, is the class assigned on image i, n is the number of images,
and ¢’ is the true class. This information can be extracted from the
training set, the test set, or any sample of pixels. The frequency
distribution gives the number of occurrences of each misclassification
pattern.

» The frequency distribution is converted into a
set of if-then rules. Each rule specifies the true
class that should be assigned to a pixel when
the given misclassification pattern is observed.
Note that there may be conflicts that need to be
resolved through the use of simple rules.
However, our experience shows that there are
relatively few of these, largely because
misclassification tends to follow systematic
patterns.

* The if-then rules are applied to reclassify pixels,
creating the conflated image.

Consider an example in which the combination
“shadow-shadow-water” (i.e., shadow on image
1, shadow on image 2, and water on image 3) is
observed to be consistently associated with a true
class of “deciduous trees”. In this case an if-then
rule is generated that assigns “deciduous trees” to
any pixel with the combination “shadow-shadow-
water”. Note that we are not making this
reassignment based on spatial association (i.e.,
trees cast shadows) but rather on a specific pattern
of misclassification across images showing that
the combination “shadow-shadow-water” is
consistently found to be associated with a true
class of “deciduous trees”.

Probabilistic Conflation

Probabilistic conflation procedures are based
on manipulation of the classification error matrices
for each classified image. Several different
decision rules can be derived. In each case the
derived rules are used to perform reassignment on
a pixel-by-pixel basis.

The text below gives a description of each rule
and shows a simple example based on the
classification error matrices shown in Tables 1
through 3. In this example, assume that a decision
is to be made about the class for a pixel that has
been classified as “shadow” on image 1, “shadow”
on image 2 and “water” on image 3.

Decision Rule 1

This is the simplest of the four rules discussed
here. Itis based on the selection of the class with
the highest UA, as UA measures the accuracy of a
class as depicted on the image. For a given pixel,
UA is determined for the class that is observed at
that pixel location on each of the images. The
class corresponding to the highest UA is selected
as the conflated result.

Example

UA, shadow, image 1: 13/17=0.765
UA, shadow, image 2: 14/17=0.824
UA, water, image 3: 18/21=0.857

According to rule 1, “water” would be selected.
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Decision Rule 2

This rule is based on accumulation of confirmatory
evidence (Tikunov, 1986). Confirmation occurs when the
same class occurs for a given pixel on more than one image.
Accumulation of evidence is performed in the following
manner. First, for each image on which the class is observed
at the pixel location, we compute the probability of
misclassification for the class. This is computed simply as
one minus UA. The product of these probabilities
(accumulated misclassification) is then computed. The same
procedure is applied for the classes observed at the pixel
location on the other images, and the accumulated
misclassifications are then converted into accumulated UAs
by computing one minus the accumulated misclassifications.
The conflated result is then the class for which the value of
accumulated UA is the highest.

Example

Accumulated UA for water: 1-(1-18/21)=0.857
Accumulated UA for shadow:1-(1-13/17)(1-14/17)= 0.959
According to rule 2, “shadow” would be selected.

Decision Rule 3

The third rule involves first converting all elements in
each classification error matrix into probabilities by dividing
them by their corresponding row totals. Given a pixel
assigned to class 1 by a classification procedure, we use the
probabilities in row i of the classification error matrix to
determine the probability of observing each class based on
the fact that class i was observed on the image. The
probabilities for each class are accumulated (see Rule 2) and
the class with the highest probability is then selected as the
conflated result.

Example

For image 1, given a pixel classified as shadow:
Probability of deciduous trees: 4/17 =0.235
Probability of shadow: 13/17 = 0.765
Probability of all other classes: 0.0

For image 2, given a pixel classified as shadow:

Probability of deciduous trees: 3/17=0.176
Probability of shadow: 14/17 = 0.824
Probability of all other classes: 0.0

For image 3, given a pixel classified as water:

Probability of water: 18/21 = 0.857
Probability of shadow: 3/21=0.143
Probability of all other classes: 0.0

Accumulated probability for shadow:
1-(1-13/17)(1-14/17)(1-3/21)=0.964

Accumulated probability for water:
1-(1-0)(1-0)(1-18/21)=0.857

Accumulated probability for deciduous trees:
1-(1-4/17)(1-3/17)(1-0)=0.370

Accumulated probability of all other classes is 0.0

According to rule 3, “shadow” would be selected.

Decision Rule 4

The first three rules account only for errors of commission,
since errors of omission do not affect UA. Thus these
methods favor classes that are conservatively assigned.
Decision rule 4 accounts for both errors of omission and
commission. This decision rule is based on the creation of a
collapsed classification error matrix. For class i on a given
classified image, the collapsed table is a two-by-two table
showing pixels as belonging to class i or not class i. The
PCCs from the collapsed tables can then be compared for all
classes observed at a given pixel location, and the class with
the highest PCC is selected as the conflated result. Note that
this approach assumes that each class is approximately equally
represented in the classification error matrix; if this is not the
case then classes with small numbers of pixels will appear to
be more accurately classified when the tables are collapsed.

Example

Tables 4a-c show the collapsed classification error matrices
for shadow on image 1, shadow on image 2 and water on
image 3.

According to rule 4, “water” would be selected.

Conflation Results

For the images examined in this study, heuristic conflation
is superior to probabilistic conflation. All conflation
techniques yield improvements in accuracy, but the heuristic
method produces an increase of 15 percent in overall accuracy
relative to the best of the original classified images. The
conflated image for the heuristic approach is shown in Figure
5 and the classification error matrix is shown in Table 5.

Table 4a Collapsed classification error matrix, shadow, image 1.

Classified image: Rows Test sites: Columns

Shadow Not Shadow
Shadow 13 4
Not Shadow 12 171
PCC=0.92

Table 4b Collapsed classification error matrix, shadow, image 2.

Classified image: Rows Test sites: Columns

Shadow Not Shadow
Shadow 14 3
Not Shadow 11 172
PCC=0.93

Table 4¢ Collapsed classification error matrix, water, image 3.

Classified image: Rows Test sites: Columns

Shadow Not Shadow
Shadow 18 3
Not Shadow 7 172
PCC=0.95




Figure 5 Classified image for heuristic conflation

Table 5 Classification error matrix for heuristic conflation.

Classified image: Rows Test sites: Columns

1 5 -
. Grass S Water | Asphalt | Concrete S 4 Shadow | Sum | UA
trees stubble roofs

becaons o | 6 1 g 1 0 0 1 0 |24 092

trees

(Grass [ =) ] 0 0 0 0 0 25 10.92
Slesd L 0 0 0 0 | 24 1096
stubble | _
Water 0 0 0 24 0 0 0 3 27 10.89
Asphalt | 0 0 l 0 23 l 2 ) 27 10.85
Concrete | 0 0 0 0 2 23 3 ) 28 10.82
ol 1 19 0 |21 (090
roofs

Shadow 2 0 0 0 0 0 0 22 24 10.92
Sum 25 25 25 25 25 25 25 2

PA 088 10921092 {096 | 092 0.92 0.76 | 0.88

PCC=0.908 Kappa=0.871

Note the high overall accuracy levels and the high per-class accuracy
statistics for all classes.

Cross-tabulation of the various conflated results with the three
original classified images shows that conflation has a significant impact
on classification results. Agreement ranges from a high ot 88 percent
(fuzzy ARTMAP vs. probabilistic conflation rule 3) to a low of 46
percent (modular neural network approach vs. probabilistic conflation
rule 3). Agreement between the probabilistic ( rule 3) and heuristic
conflation results is 81 percent, which indicates that the two conflation
methods also produce somewhat different results.

Conclusion

This study demonstrates that conflation procedures offer the
possibility of significant enhancements in classification accuracy when
multiple land cover classifications have been produced for the same
area. Conflation procedures can be developed easily using information
available from the classification error matrix and implemented as a
post-processing step. The rationale for conflation 1s that no single
image necessarily classifies all classes with equal accuracy. Conflation
allows the user to select those parts of each image that are most
accurately classified and merge these together to create a hybrid image.

(Conflation is of course unnecessary if one
classification result has the highest per-class

accuracy statistics for all classes.) It is likely that

more elaborate conflation procedures can be
developed and we urge other researchers to
examine this issue in more detail. Our own
research in this area is currently focusing on the
development of methods to identify the most
appropriate conflation methods to use in different
contexts, as different methods can yield different
results.
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