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ABSTRACT 
This dissertation investigates how human perceivers and learning algorithms cope 

with noisy, complex environments. The first part of the dissertation presents results of 
psychoacoustic experiments that give insight into human auditory perception of sounds 
originating near the listener. The second part develops a memory-based computational 
learning architecture that is resistant to noise while limiting its own internal complexity. 

The first part of the dissertation describes results of two psychoacoustic 
experiments. The first experiment investigates the ability of human listeners to employ 
binaural auditory processing when detecting a sound from various positions around the 
listener. The experiment is performed in a simulated noisy anechoic environment, which 
provides more realistic spatial cues than have been tested in previous headphone studies 
of masked sound detection while allowing the acoustic signals to be fully characterized. 
The results support the idea that performance is determined by brainstem auditory 
processing and is not influenced by any higher-level sound-location-based processing. 
The second psychoacoustic experiment studies how the listener’s position in a room and 
the listener’s experience in a room influence the ability to accurately localize nearby 
sounds in azimuth and distance. The results show that the listener position in the room 
influences response variability and that as a listener becomes familiar with a room, 
passive learning occurs, reducing response variability. Finally, the presence of a nearby 
wall has a small influence on azimuthal response bias, but no noticeable effect on 
perceived source distance. 

In the second part of the dissertation, a memory-based learning system, called 
PointMap, is proposed. This system implements new methods of pruning based on 
informative value of the stored memories. It is shown that such a “forgetting” mechanism 
can solve the problems of category proliferation and noise sensitivity in many learning 
systems. Variations on the Adaptive Resonance Theory systems are also investigated. 

Both portions of this dissertation demonstrate that learning enables humans and 
machines to perform robust pattern recognition tasks in the face of noise and uncertainty 
in the inputs. 
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SPATIAL HEARING, AUDITORY SENSITIVITY, AND 
PATTERN RECOGNITION IN NOISY ENVIRONMENTS 

 
Chapter 1 Introduction  

Every organism and almost every artificial system interacts with the environment 
that surrounds it. This interaction is based on sensory information received from the 
environment. Many factors influence the ability to correctly process the input sensory 
information, including corruption by external noise from various sources, such as low-
quality sensors, environmental complexity, or the presence of multiple, simultaneous 
sources of sensory information. Therefore, separating useful information from noise is a 
general problem with which all organisms and systems must cope. This dissertation 
investigates the problem of separating information from noise in two distinct domains. 
First, human auditory perception is studied in a series of psychoacoustic experiments that 
investigate how humans detect sounds masked by noise and how they determine the 
location of sound sources in reverberant rooms. Second, general computational learning 
algorithms are developed that are able to identify and suppress noise in the inputs 
received from the environment.  
1.1 Spatial hearing 

The auditory system in humans and animals processes acoustic signals received at 
the ears to extract information encoded in the signals (Moore, 1997). The information 
extracted can include: a message encoded in the signal (linguistic content of speech, 
emotional content of a melody), the identity of the signal source (the human speaker, a 
mosquito), or the spatial location of the sound source. Experiments conducted as part of 
the current thesis examine the mechanisms underlying human spatial hearing (Blauert, 
1997). The general goal is to further our understanding of how humans determine spatial 
location of sound sources, how they use this information when performing various 
auditory tasks, and how these processes are influenced by the acoustic environment. 
Spatial hearing allows listeners mainly to perform two kinds of tasks: to localize sources 
of sounds and to improve perception of sounds masked by other spatially-separated 
sounds. Performance in both of these kinds of tasks is considered in this dissertation. 

Over the last century, spatial hearing has been extensively studied (Gilkey and 
Anderson, 1997). However, most studies examined perception of sounds coming from 
sources relatively far from the listener (not within the reach of his/her hands) in anechoic 
space (Brungart and Durlach, 1999). Moreover, most studies fixed the distance of the 
sound source and examined sensitivity to source azimuth or elevation without 
considering source distance (Middlebrooks and Green, 1991). Of course, for sources 
more than about one meter from the listener in anechoic space, most spatial auditory 
localization cues do not change with source distance. However, this is not the case for 
nearby sources. The present studies examine spatial perception of sound sources 
originating within reach of the listener as a function of source distance.  

This dissertation presents results of two spatial hearing studies, introduced 
separately in the following two sections. 
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1.1.1 Detection of pure-tone sources masked by noise 

One well-known spatial hearing phenomenon is the “cocktail party effect” 
(Bronkhorst, 2000), which refers to the ability to selectively listen to one sound source 
and ignore other simultaneous sound sources, particularly when the competing sources 
are in different spatial positions relative to the listener. This effect has been studied for a 
variety of complex stimuli (speech, tone complexes, noise bursts). However, no previous 
study has examined how source distance influences a pure tone target signal in the 
presence of a broadband noise masker or considered the effect of source distance. On the 
other hand, there is extensive body of literature and several models that characterize 
detectability of pure tones in noise when the signals are presented via headphones 
(Durlach and Colburn, 1978). This literature shows that the binaural cues, i.e., the 
differences in timing and intensity with which the target tone and the masking noise are 
presented at the two ears can provide the most salient detection cues for tones in noise 
when the binaural cues in the tone and noise differ.  

The first experiment presented in this thesis measures how detectability of a pure-
tone target masked by a noise masker is influenced by the location of the sources when 
the sources are within reach of the listener. Detection thresholds are measured for various 
combinations of azimuth and distance of the sources relative to the listener in a simulated 
anechoic environment. An existing physiologically based model of binaural auditory 
processing is then combined with acoustic analysis to predict the experimental results. 
1.1.2 Localization in reverberant rooms 

In real rooms, the acoustic signals reaching the listener are influenced by the 
sound reflections off walls and other surfaces (Hartmann, 1997). This “reverberation” can 
degrade directional auditory perception, but it can provide a cue for distance perception 
(Santarelli, 2000). The acoustic effect of reverberation depends on the position of the 
listener in the room as well as the position of the source relative to the listener (Brown, 
2001). When the listener is in the center of the room, the effect of reverberation is 
roughly constant independent of the sound source position, because all the walls are 
relatively far from the listener. When the listener is close to a wall, the effect of 
reverberation depends on the sound source position due to changes in the relative timing 
of and direction of incidence of early reflections off the wall. Finally, a recent study 
(Shinn-Cunningham, 2000) suggests that listeners’ performance improves over time 
when listeners perform localization tasks in such rooms.  

The second experiment in this thesis measures localization of nearby sound 
sources varying in azimuth and distance. In order to investigate the effects of changes in 
room acoustics on localization performance, each listener is tested in different locations 
in the room. In order to tease apart the influence of experience on localization, subjects 
were assigned to one of two groups that differed in the order in which the different room 
locations were tested. Behavioral results are compared to acoustic measurements of the 
signals reaching the ears of a KEMAR acoustic manikin that show how localization cues 
are affected by room reverberation in different listener locations in the room. 
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Together these two experiments provide a basis for future research investigating 
how humans use spatial hearing in everyday listening situations. The results might be 
also useful in various practical applications, including hearing aids and virtual auditory 
displays. 
1.2 Memory-based learning and Adaptive Resonance Theory 

A general pattern recognition task is to design an artificial system that can learn to 
classify objects into distinct categories based on certain features (e.g., to classify humans 
as children vs. adults based on height) (Duda, Hart and Stork, 2001). There are many 
possible strategies a system can use to learn this task. The memory-based learning 
systems’ approach is to store all (or a subset of) the presented exemplars during training. 
After training, these systems classify a new exemplar into the class of the most similar 
pattern(s) among the ones stored (Dasarathy, 1991). Memory-based learning systems 
have been shown to be very accurate, but they have several weaknesses, including large 
memory requirements and sensitivity to noise. The present thesis proposes a method of 
pruning based on the information value of each of the stored exemplars to cope with 
these problems. The information value of an exemplar is defined as a combination of its 
predictive accuracy and criticality. Pruning allows the system to limit its size on-line 
during learning, as well as after the training is over. Depending on the choice of a system 
parameter, the information-value computation and pruning can bias the system to focus 
on fine detail in the training data or to generalize and eliminate most of the noisy 
exemplars. The information value computation and pruning methods are implemented in 
a new incremental learning system called PointMap and evaluated on several benchmark 
problems. 

ARTMAP neural network systems (Carpenter, Grossberg and Reynolds, 1991; 
Carpenter, Grossberg, Markuzon, Reynolds and Rosen, 1992) share certain 
characteristics with memory-based learning systems. Instead of retaining individual 
training exemplars, ARTMAP systems generate a set of hyper-rectangles each of which 
encodes multiple exemplars from the training set. The similarity between an unknown 
exemplar and the stored code is evaluated by a match function which is typically 
insensitive to the position of the exemplar if the exemplar lies within the hyper-rectangle. 
That is, an exemplar that is within the hyper-rectangle but close to its border and an 
exemplar in the center are encoded by the hyper-rectangle equally. This may cause 
sensitivity to noise in the ART systems because noise can cause an exemplar that should 
be outside the hyper-rectangle to be shifted into it, whereas an exemplar that is in the 
center of the hyper-rectangle is less susceptible to this kind of noise. The final project of 
this thesis develops graded signal functions for ARTMAP neural networks. These 
functions generalize the original signal function so that it is sensitive to a position of the 
exemplar within the hyper-rectangle. 

Both the PointMap pruning methods and the ARTMAP graded signal functions 
are developed here for specific algorithms, but they can be implemented into most 
memory-based or ARTMAP systems. 
1.3 Organization of dissertation 

This dissertation is divided into three main parts. The first part (Chapter 2) 
contains a review of background information for each of the studies. The second part 
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describes the two auditory experiments: Chapter 3 describes spatial unmasking of pure 
tone signals while Chapter 4 and Chapter 5 describe auditory localization in real rooms. 
The third part describes two pattern recognition studies: Chapter 6 develops the PointMap 
incremental memory-based learning system and Chapter 7 describes the new signal 
function for the ART neural networks. Chapters 3-7 were originally written for journal 
publication, so each includes a review of the literature for that particular study. 
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Chapter 2 Background 

This chapter contains general background for the topics studied in the dissertation. 
Background material specific to a particular chapter is provided at the beginning of that 
chapter. Topics covered here include: monaural and binaural cues for detection of sounds 
in noise and for auditory localization, effects of room reverberation on binaural sound 
localization cues, and memory-based learning algorithms and Adaptive Resonance 
Theory (ART). 
2.1 Spatial hearing 

When a sound is produced, it propagates from its source through the environment 
until it reaches the listener’s ears. The sound received at the ears differs from the sound 
produced by the source because it is modified by interactions with the listener’s body, 
head, and pinnae (Brungart and Rabinowitz, 1999; Shinn-Cunningham, Santarelli and 
Kopčo, 2000). In addition, if there are acoustically-reflective objects (for example walls) 
in the environment, acoustic reflections off these objects are received by the ears along 
with the “direct” sound. The basis of spatial hearing is in that the listener’s auditory 
system extracts cues about the location of the sound source from the sounds received at 
the ears and the listener uses these cues to perform various tasks (localization, detection 
of sounds).  
2.1.1 Head-related transfer functions 

The transformation of a sound from the source to the ear is constant for a fixed 
sound source and listener position. The sound source, the environment in which the 
sound propagates (including the listener, and all objects and walls in the environment), 
and the ear create a linear system that transforms the input signal (sound produced by the 
source) into an output signal (the sound received at the ear). This system can be 
mathematically characterized by its impulse response called the Head-Related Transfer 
Function (HRTF). The HRTF describes the signal reaching the ear when a broadband 
impulse is played from a specific source location. This impulse response is sufficient to 
predict how any sound coming from a specific location is altered as it travels to and 
impinges on the ear. Because the sound has to travel through a different path to each of 
the two ears, a pair of HRTFs (the left-ear and the right-ear HRTF) provides complete 
information about how any sound is received at the ears when originating from a given 
location.  

There are two main applications of HRTFs in hearing research. First, HRTFs can 
be used to generate virtual auditory environment. That is, by convolving a sound with the 
HRTF one can simulate how the sound would be received at the listener’s ears if it was 
presented from any location around the listener in any environment. Second, HRTFs can 
be analyzed to determine what spatial auditory cues are available to the listener when a 
sound is presented from a specific location in a specific room.  
2.1.2 Basic cues for spatial hearing 

The human auditory system extracts from the sounds received at the ears two 
kinds of acoustic cues (Blauert, 1997). “Monaural” cues depend only on the sound 
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received at each ear separately. ”Binaural” cues depend on comparing the signals 
received at the two ears. The most important monaural localization cue is the change in 
the magnitude spectrum of the sound caused by the interaction of the sound with the 
head, body, and pinna before entering the ear. The most salient binaural cues are 
differences in the time of arrival (the interaural time difference, ITD, which can be 
converted into interaural phase difference, IPD) and differences in the intensity (the 
interaural level difference or ILD).  

Monaural cues are more ambiguous spatial cues than binaural cues because the 
auditory system must estimate what spectral features are due to the original spectrum of 
the source and what are due to the filtering of the head and body (and thus depend on 
source location). Although in theory it is not possible to separate effects of the source 
spectrum from spectral filtering in the HRTF, listeners are familiar with many everyday 
sounds. Similarly, if an unfamiliar sound is produced several times from various 
locations, the listener may be able to learn what spectral features are due to source 
location and what are due to source content.  

In contrast with monaural cues, binaural cues are essentially independent of the 
acoustic characteristics of the original sound. The only prerequisite for availability of 
these cues is that the source has sufficient spectral energy in the frequency region for 
which the cue is to be extracted. 
2.1.3 Effects of reverberation on spatial cues 

When the listener is in a reverberant environment (e.g., in a room) the direct 
sound received at the ears is combined with multiple copies of the sound reflected off the 
walls before arriving at the ears. This reverberation acts like noise that deteriorates the 
spatial cues extracted by the auditory system. On the other hand, reverberation itself can 
be a spatial cue. 
2.1.4  Sound localization 

Positions of objects in 3-dimensional space are usually described using either 
Cartesian (x, y, z) or spherical (azimuth, elevation, distance) coordinates. For studies of 
spatial hearing, the most natural coordinate system uses a bipolar spherical coordinates 
(similar to the coordinate system used to describe a position on the globe) with the two 
poles at the two ears and the origin is the middle point between the ears (Duda, 1997). In 
this coordinate system the azimuth of an object is defined by the angle between the 
source and the interaural axis (equivalent to latitude on a globe) and the elevation is 
defined as the angle around the interaural axis (equivalent to the longitude on a globe). 
The third spatial dimension is then the distance from the center of the head to the object. 
Using this coordinate system is natural when discussing spatial hearing because different 
auditory localization cues map onto these coordinate dimensions in a natural, monotonic 
manner. The three spatial dimensions are covered by the auditory localization cues as 
follows (Wightman and Kistler, 1997).  
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2.1.4.1 Perception of source azimuth 
For relatively distant sources, binaural cues are the primary cues for perception in 

the azimuthal dimension. Specifically, for low-frequency stimuli (below 1-2 kHz), the 
ITD changes relatively rapidly with source azimuth and the ILD changes relatively 
slowly with the source azimuth. Unsurprisingly, the perceived azimuth of low-frequency 
sounds is dominated by the ITD. For high-frequency stimuli (above 1-2 kHz) the ILD 
changes rapidly with azimuth due to head-shadow effects. Moreover, the ability of the 
auditory nerve fibers to encode temporal information is lost because the neurons’ 
maximum firing rates are not high enough to enable them to fire in phase with the 
stimulus. The auditory system weights the ILD more highly when determining the 
azimuth of high-frequency, distant sources (Strutt, 1907). 

This simple dichotomy (ITD for low frequencies, ILD for high frequencies) has 
limited application for nearby sources as studied here (Shinn-Cunningham et al., 2000). 
The main difference for nearby sources is that a reliable ILD cue is available even at low 
frequencies. The ILD cue for distant sources comes mainly from the head shadow effect, 
that is, from the fact that the head creates an obstruction for the sound traveling to the 
more distant ear. For nearby sources, the size of the head is comparable to the source 
distance and the ILD arises primarily due to the difference in the distances from the 
source to each of the ears. 

In theory, the azimuth of a sound source can be determined also monaurally, 
because the high-frequency components of the sound are attenuated more compared to 
low-frequency components as the sound source moves contralaterally (away from the ear 
in the azimuthal dimension). However, compared to the binaural cues this cue is weak 
and ambiguous. 

2.1.4.2 Perception of source elevation 
If the human head were a perfect sphere with the ears exactly opposing each 

other, there would be no binaural cues for elevation because the binaural cues are 
constant, creating the well-known cones of confusion (Santarelli, Kopčo, Shinn-
Cunningham and Brungart, 1999b). However, small head asymmetries may provide a 
weak binaural elevation cue. The main cue the auditory system uses to determine the 
elevation of a sound source is the monaural spectrum determined by the interaction of the 
sound with the pinnae (Wightman and Kistler, 1997). Specifically, there is a spectral 
notch that moves in frequency from approximately 5 kHz to 10 kHz as the source moves 
from 0° (directly ahead of listener) to 90° (above the listener’s head) and that is thought 
by some to be the most prominent elevation cue (Musicant and Butler, 1985). 

For nearby sources, the asymmetries of the head and of the position of the ears are 
emphasized more than for distant sources. Therefore, the changes in binaural cues are 
larger. Still, the monaural cues dominate elevation perception. 

2.1.4.3 Perception of source distance 
Little is known about exactly how the auditory system determines the distance of 

a sound source (Santarelli, 2000). For very distant sources in an anechoic environment 
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the only available distance cues are the changes in the frequency spectrum (Coleman, 
1968) or overall level, which can only be used if the listener has a priori knowledge of the 
sound source. For nearby, lateral sources the ILD changes with source distance and 
provides a distance cue (Brungart, 1998). Thus, the cones of confusion for distant sources 
transform for nearby sources into “doughnuts” of confusion (Shinn-Cunningham et al., 
2000). In reverberant rooms, the auditory system uses some aspect of reverberation to 
determine the source distance (Bronkhorst and Houtgast, 1999). 

2.1.4.4 Localization in reverberant rooms 
Most earlier studies of sound localization were performed in an anechoic chamber 

and measured performance in only two dimensions: azimuth and elevation (Wightman 
and Kistler, 1989; Makous and Middlebrooks, 1990; Wenzel, Arruda, Kistler and 
Wightman, 1993).  There are also several studies of localization in reverberant 
environments (Hartmann, 1983; Rakerd and Hartmann, 1985, 1986; Wagenaars, 1990). 
In addition, several recent studies measured also the perceived source distance 
(Bronkhorst and Houtgast, 1999; Santarelli, 2000; Zahorik, 2000).  These studies show 
that in reverberant space, distance perception is more accurate.  However, reverberation 
also causes small degradations in directional localization accuracy (Santarelli, 2000), 
although performance improves with practice (Shinn-Cunningham, 2000). 

In a recent study, Brown (2001) analyzed the effects of reverberation on acoustic 
characteristics of the perceived sounds. This study showed that reverberation alters the 
monaural spectrum of the sound as well as the interaural level and phase differences of 
the signals reaching the listener. These effects depend on the source position relative to 
the listener as well as on the listener position in the room.  

The present study compares acoustic analyses of the signals reaching a listener in 
a reverberant room to behavioral results from a localization study performed in the room 
from which the acoustic measurements were taken. 
2.1.5 Detection of sounds masked by noise 

2.1.5.1 Factors determining detectability of masked targets 
When listening for a target auditory signal in the presence of another 

simultaneous signal (a masker), a listeners’ ability to perceive the target is influenced by 
the target and masker locations. In general it is easier to detect or recognize the target 
when it is spatially separated from the masking sound compared to the condition when 
the two sources are located at the same position (Ebata et al., 1968; Saberi et al., 1991; 
Good et al., 1997; Kidd, Mason, Rohtla and Deliwala, 1998). Three factors contribute to 
this spatial unmasking effect. First, the acoustic signal-to-noise ratio (SNR) at either ear 
changes with target and the masker location due to both head shadow effects and distance 
effects. Spatial separation of target and masker can either increase or decrease the SNR at 
a given ear, depending on the spatial locations of target and masker.   

In addition to simple energetic effects due to changes in SNR at the ears, changes 
in source location lead to changes in the binaural cues due to that source. The auditory 
system can detect the presence of the target due to changes in the binaural cues in the 
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target plus masker stimulus compared to the binaural cues in the masker alone. In 
general, the target influences IPD cues in the target plus masker most when the IPDs in 
the target and masker are most different; thus, target detection is easiest when target and 
masker IPDs differ by π. Similarly, detection of an in-phase target masked by an in-phase 
noise is easiest if the ILD of the masker is 0 and ILD of the target is ∞ (Durlach and 
Colburn, 1978). 

Finally, informational masking can be influenced by the perceived spatial 
locations of target and masker. While there is no “standard” definition of informational 
masking, it is used to refer to influences that cannot be ascribed to simple acoustical 
parameters of the sounds reaching the two ears (e.g., attentional effects, cross-modality 
influences, etc.). Informational factors have been shown to play an especially important 
role for tasks involving high levels of uncertainty, e.g., when complex sounds are masked 
by complex sounds (Kidd et al., 1998) or when speech is masked by speech (Freyman, 
Helfer, McCall and Clifton, 1999; Hawley, Litovsky and Colburn, 1999). 

2.1.5.2 Previous studies of binaural and spatial unmasking 
Spatial unmasking has been studied under headphones and in the free field. Data 

from headphone experiments address many aspects of auditory processing (Durlach and 
Colburn, 1978; van de Par and Kohlrausch, 1999) and there are several models that 
successfully explain observed performance (Colburn and Durlach, 1978; Colburn, 1996). 
Free-field studies, all of which were done with sources relatively far from the subject’s 
head, generally focused on determining the relative contributions of energetic, binaural, 
and informational factors to performance. Both headphone and free-field studies analyzed 
unmasking for pure tone, complex sounds, and speech stimuli. 

Results of several studies of free-field masking of pure tones are available (Ebata, 
Sone and Nimura, 1968; Gatehouse, 1987; Santon, 1987; Doll, Hanna and Russotti, 1992; 
Doll and Hanna, 1995). These studies used a range of frequencies (200 – 6000 Hz), but 
restricted source locations to the frontal horizontal plane and at a fixed distance at least 
1 m from the center of the head. Unmasking of up to 24 dB was observed. Most of this 
effect was probably due to the energetic effects, although binaural interactions 
undoubtedly contributed. For pure-tone targets, the role of informational masking is 
thought to be negligible; at threshold, pure-tone detection is determined by the subject’s 
ability to detect subtle changes in the masker due to the presence of the target, not by the 
ability to “hear out” the target as a separate auditory event. In general, even for signal 
levels above threshold where the target is perceived as a separate object, its perceived 
location is strongly biased by the location of the masking noise (Santon, 1987). On the 
other hand, Lutfi (1990) argues on a theoretical basis that 22% of the masking observed 
in traditional tone-in-noise detection experiments is due to informational masking. 

Free-field masking of click-train targets has also been studied (Saberi, Dostal, 
Sadralodabai, Bull and Perrott, 1991; Good, Gilkey and Ball, 1997), leading to spatial 
unmasking of up to 20 dB (similar to the results for pure-tone targets). No quantitative 
modeling of these data has been performed. However, Good et al. (1997) suggest that 
these data could be predicted by determining the frequency band with most favorable 
SNR at one of the ears and estimating the binaural cues in that frequency band. Several 



10 

 

studies (Watson, Kelly and Wroton, 1976; Kidd, Mason, Deliwala, Woods and Colburn, 
1994) have examined the contribution of informational masking to spatial unmasking of 
complex sounds. In these studies the masker was a complex of masking tones that was 
randomly varied from presentation to presentation, introducing a factor of uncertainty 
that made the task of detecting/recognizing the target much harder. For this kind of task, 
the spatial unmasking was up to 30 dB. These results show that spatial unmasking is very 
important in informational masking tasks. 

A majority of studies of free-field spatial unmasking looked at changes in 
intelligibility of masked speech (i.e., the cocktail-party effect, Cherry, 1953). These 
studies (reviewed in Bronkhorst, 2000) show that the relative binaural contribution to 
unmasking of speech is generally smaller (e.g., 3 dB) than for pure-tone targets. This 
result is at least partially explained by the fact that the spectral region important for 
speech understanding (2-5 kHz) does not overlap with the spectral region for which 
binaural unmasking effects are large (100-1000 Hz). On the other hand, recent studies of 
spatial changes in intelligibility of masked speech (Hawley et al., 1999; Freyman, 
Balakrishnan and Helfer, 2000) suggest that informational factors play a significant role 
in spatial unmasking, especially when the target speech is masked by an interfering 
speech signal. 

2.1.5.3 Models of binaural unmasking 
There are several models that can successfully predict performance in binaural 

and spatial unmasking tasks (Colburn and Durlach, 1978). The Equalization and 
Cancellation (EC) model (Durlach, 1972) describes binaural detection as a process in 
which the signals received at the two ears are first equalized by finding the best time-
delay to equate the noise in the left and right ear signals, then subtracting the two signals 
(canceling the noise). Colburn (1977) proposed a physiologically-plausible model to 
predict detectability of tones and complex sounds masked by noise. Zurek (1993) 
extended this (Colburn, 1977a) model to predict spatial unmasking of speech masked by 
noise. While the Zurek model has been developed to predict spatial unmasking of speech, 
the Colburn model (or any other model) has not been previously applied to quantitatively 
predict spatial unmasking of non-speech stimuli. 

2.1.5.4 Present study 
The present study measures spatial unmasking for pure tone targets masked by 

broadband noise. The study is performed in a simulated anechoic environment, bridging 
the previous headphone and free-field spatial unmasking studies. In contrast to previous 
studies, it explores spatial unmasking for nearby sources, and measures unmasking for 
source separation in distance, not only in azimuth. Also, the energetic and binaural cues 
are extracted from HRTFs used in the simulation and predictions of the Colburn (1977) 
model based on these cues are compared to the behavioral data. 

In general, the two studies presented in this dissertation contribute to our 
understanding of how humans cope with noisy, complex environments. 
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2.2 Memory-based learning and neural networks for pattern recognition 
Pattern recognition (Duda et al., 2001) is a task that humans perform 

continuously, for example, whenever we look around us, listen to radio, or touch a piece 
of cloth to determine its softness. There is a lot of interest in developing artificial systems 
that can recognize patterns, for example in automated speech recognition or visual object 
recognition. The following two sections describe related types of general pattern 
recognition systems: memory-based learning systems and Adaptive Resonance Theory 
neural networks. 
2.2.1 Memory-based learning 

The nearest neighbor (NN) algorithm (Cover and Hart, 1967; Dasarathy, 1991) is 
a well-known classification algorithm popular because it is very simple and it achieves 
high accuracy. In its basic version, the only learning step in the NN algorithm is to store 
all the training exemplars into its memory. After learning, when an unknown exemplar is 
presented, the NN algorithm assigns it to the class of its nearest neighbor among the 
stored exemplars. The simplest extension of the NN algorithm is the k-NN algorithm, in 
which, when an unknown exemplar is presented, multiple (k) nearest neighbors of the 
unknown exemplar are found and the class of the exemplar is determined by voting 
among the neighbors. The NN algorithm is the basic algorithm of a class of learning 
systems referred to as memory-based (Cybenko, Saarinen, Gray, Wu and Khrabrov, 
1994), instance-based (Aha, Kibler and Albert, 1991), exemplar-based (Salzberg, 1990), 
case-based (Ram, 1993), experience-based (Sycara and Navinchandra, 1989), or lazy 
(Aha, 1997) learning algorithms. All these algorithms share the basic feature of the k-NN 
algorithm: the learning process consists of storing (a subset of) the training set into the 
memory; and classification of an unknown exemplar consists of finding the most similar 
stored exemplars and assigning the unknown exemplar to their class.  

Well-known problems of the NN algorithm are its sensitivity to noise and large 
memory requirements. A majority of the memory-based learning systems are variations 
on the basic NN mechanism that try to eliminate these and other problems (see recent 
reviews by Dasarathy, Sánchez and Townsend, 2000; Wilson and Martinez, 2000; Lam, 
Keung and Liu, 2002). Several groups of memory-based learning algorithms can be 
defined depending on how the algorithms approach the following issues: direction of 
search (incremental or decremental), intuition about which exemplars to keep (center of 
clusters or border exemplars), distance function used, and feature weighting strategy.  

The basic strategy to alleviate the large memory requirements of the memory-
based learning systems is pruning (also called reduction or filtering) in which a system 
memorizes a subset of the original training set. The exemplars stored by a memory-based 
learning system are called nodes, and the set of stored nodes is called a coding set or 
code. Examples of pruning methods are the classical editing (Wilson, 1972) and 
condensing (Hart, 1968) rules for the NN algorithm. The pruning methods are usually 
simple and fast, however they might be unable to find the optimum solution if the best 
representatives are not included in the training set. 

Direction of the search refers to the method the algorithm uses to generate the 
code. Incremental learning methods (e.g., the condensed nearest neighbor, CNN) (Hart, 
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1968) start with an empty coding set and sequentially add nodes into the code depending 
on whether they are considered to be useful. Decremental learning methods (e.g., the 
edited nearest neighbor, ENN) (Wilson, 1972) start by copying the whole training set into 
the code. Then, for each node in the code they evaluate whether it contributes to 
performance of the system, eliminating the nodes with the least contribution. There are 
several differences between the incremental and decremental pruning methods. 
Incremental methods are less computationally demanding and they require less memory. 
On the other hand the decremental methods are not sensitive to the training set ordering 
and the code they find is usually smaller and better than the code generated by the 
incremental systems. 

Another factor that distinguishes memory-based learning systems is whether they 
prefer to retain the nodes that are near or far from the approximated decision boundary. 
The intuition behind retaining nodes near the boundary is that these nodes approximate 
the decision boundary while the “center” nodes influence the decision very rarely. On the 
other hand, retaining the center nodes can significantly reduce the code size and it can 
make the system resistant to noise while still correctly approximating the decision 
boundary. Some systems combine these strategies by looking for best center nodes and 
best border nodes separately, and then combining them (Lam et al., 2002). 

Various distance metrics (also called similarity measures) can be used to 
determine the nearest neighbors of an exemplar. For continuous-valued features the most 
commonly used distance metrics are the Euclidian or the city-block metric or, more 
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the input space, with n=1 for the city-block and n=2 for the Euclidian distance. Other 
continuous-value distance functions include the Minkowsky, Mahalanobis, Camberra, 
Chebychev, Quadratic, Correlation, or Chi-square distance metrics (Wilson and Martinez, 
2000). Specific distance metrics were developed for features with nominal (discrete, 
unordered) values. The simplest one is the overlap metric, which is 0 if the two input 
vectors are equal and 1 otherwise. An alternative metric for nominal features is the Value 
Difference Metric (Stanfill and Waltz, 1986) which considers two nominal values to be 
closer if they have more similar classifications, regardless of their ordering. In addition, 
distance metrics have been developed that can handle both nominal and continuous 
features, as well as features with missing values (Wilson and Martinez, 1997). 

If the input space is multidimensional, some features (dimensions) can be more 
informative than others and different dimensions can be contaminated by different 
amounts of noise. Therefore, it is important for memory-based learning systems to use a 
proper form of feature weighting that will stress the informative features and suppress the 
noisy ones. An extensive review of feature-weighting methods is available in 
Wettschereck, Aha and Mohiri (1997).  

Memory-based learning systems are susceptible to various forms of the curse of 
dimensionality. For example, the search time needed to find the nearest neighbor grows 
exponentially with the number of input dimensions. Also, the number of training inputs 
needed to cover the input space with equal density grows exponentially with the input 
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space dimensionality. Several methods have been proposed to overcome this curse in 
these systems (Cybenko et al., 1994). 
2.2.2 Adaptive Resonance Theory 

Adaptive Resonance Theory (ART) was introduced by Grossberg (1976) as a 
theory of human cognitive information processing. Based on the theory, a series of real-
time neural network architectures for unsupervised and supervised learning have been 
developed. These networks combine fast learning with stable category coding and are a 
suitable tool for many pattern recognition problems. The ART models for unsupervised 
learning include ART 1 (Carpenter and Grossberg, 1987a), ART 2 (Carpenter and 
Grossberg, 1987b), fuzzy ART (Carpenter, Grossberg and Rosen, 1991), and distributed 
ART (Carpenter, 1997). ARTMAP, a family of supervised ART architectures developed 
for classification problems, includes fuzzy ARTMAP (Carpenter et al., 1992), and 
distributed ARTMAP (Carpenter, Milenova and Noeske, 1998) neural networks. A 
collection of papers on ART models can be found in (Carpenter and Grossberg, 1991), 
more recent models are summarized in Carpenter et al. (1998).  

ARTMAP neural networks share certain characteristics with the memory-based 
learning systems. Therefore, some characteristics of the memory-based learning systems 
described in the previous section apply also to the ARTMAP architectures. 
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Chapter 3 Spatial unmasking of nearby pure-tone sources                  

Abstract 

Detection thresholds for 500-Hz and 1000-Hz pure-tone targets (T) were 
measured in the presence of a broadband masker (M) for different spatial configurations 
of T and M. Sources were simulated in anechoic space for source positions within reach 
of the listener, varying not only in azimuth (- 90° to +90° in 45° steps) but also distance 
(15 and 100 cm). For the spatial configurations tested, the T detection thresholds range 
over 50 dB (a much larger range than occurs when sources are more distant), primarily 
due to large energy effects. Inter-subject differences in the thresholds are large; however, 
the pattern of results is similar across subjects. For M at 0˚ or 45˚, the thresholds decrease 
with azimuthal separation of T and M and increase with T distance for both T 
frequencies. For M at 90˚, results are more complex. In some of these cases, azimuthal 
separation of T and M yields little change or even a small increase in the threshold and 
the pattern of results depends on T frequency. The amount of energy reaching the 
listener’s ears from different T and M locations was calculated from the individually-
measured head-related transfer functions (HRTFs) used in the simulations. The changes 
in the amount of energy due to changes in T and M location combined with predictions of 
binaural unmasking from a modified version of the Colburn (1977a) model capture 
general trends in the pattern of spatial unmasking. Individual differences in HRTFs (in 
both monaural and binaural acoustic cues) and in binaural sensitivity influence spatial 
unmasking, especially for sources within reach of the listener. However, even after 
accounting for inter-subject acoustic differences, small but consistent deviations between 
subject-specific model predictions and behavioral results remain. In addition, results 
suggest that individuals differ not only in their overall sensitivity to binaural cues (as 
assumed in the Colburn model), but also in how their binaural sensitivity varies with the 
spatial position of (and interaural differences in) M. 
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3.1 Introduction and background 
When listening for a target sound (T) in the presence of a masking sound (M), a 

listener's ability to perceive T is influenced by the locations of T and M. In general, it is 
easier to detect or recognize T when it is spatially separated from M compared to when 
the T and M are at the same position. This "spatial unmasking" effect has been studied 
for many types of stimuli, including speech (e.g., see Freyman et al., 1999; Shinn-
Cunningham, Schickler, Kopčo and Litovsky, 2001), click-trains (e.g., see Saberi et al., 
1991; Good et al., 1997), and tone complexes (e.g., see Kidd et al., 1998). 

For broadband noise maskers, spatial unmasking arises primarily from energetic 
and binaural effects. Energetic unmasking occurs because under many circumstances the 
target-to-masker ratio (TMR) increases at one ear when T and M are spatially separated 
compared to when they are at the same location. Binaural unmasking can occur when the 
interaural time and intensity differences caused by T and M differ.  

There are many studies of how binaural differences influence tone detectability in 
noise (for a review of this classic literature, see Durlach and Colburn, 1978). However, 
most of these studies were performed under headphones using interaural differences that 
do not occur naturally. There are only a few studies that have measured how tone 
detection is affected by the spatial locations of T and M (examples include Ebata et al., 
1968; Gatehouse, 1987; Santon, 1987; Doll and Hanna, 1995). Moreover, results of these 
studies are inconsistent, finding spatial unmasking ranging from as little as 7 dB (Santon, 
1987) to as much as 24 dB (Gatehouse, 1987). These apparent discrepancies may be due 
to differences in the spatial configurations tested. However, none of these studies 
analyzed how T and M levels at the ears changed with spatial configuration and did not 
factor out how energetic and binaural factors may have contributed to the observed 
spatial unmasking. 

Previous studies of spatial unmasking for pure tone targets considered sources 
relatively far from the listener and looked only at unmasking due to azimuthal separation, 
ignoring any effects of source distance. For sources more than about a meter from the 
listener, the only significant effect of changing source distance is a change in signal level 
that is equal at the two ears. However, changes in source distance for sources within 
reach of the listener produce changes in signal level that differ at the two ears, resulting 
in exceptionally large interaural level differences (ILDs; see Brungart and Rabinowitz, 
1999; Shinn-Cunningham et al., 2000), even at low frequencies (for which ILDs are 
essentially nonexistent for relatively distant sources). In addition, for near sources, 
relatively small positional changes can lead to large changes in the energy of the T and M 
reaching the two ears. 

A few previous studies suggest that binaural performance can be worse than 
monaural performance using the ear with the best TMR (the "better ear"), particularly 
when there are large ILDs in the stimuli (e.g., see Bronkhorst and Plomp, 1988; Shinn-
Cunningham et al., 2001). Given that large ILDs can arise when sources are within reach 
of the listener, studies of binaural unmasking for nearby sound sources may shed light on 
these reports. 

The current study examines spatial unmasking of pure tone sources within reach 
of a listener in a simulated anechoic environment. Individually-measured head-related 
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transfer functions (HRTFs) were used to simulate sources. This approach allowed 
realistic spatial acoustic cues to be presented to the subjects while still allowing detailed 
analyses of the stimuli reaching the subjects during the experiment. The main goals of the 
study are to: 1) measure how T threshold depends on T and M azimuth and distance for 
nearby sources, 2) characterize energetic effects by analyzing how the TMR varies with 
the spatial configurations tested, 3) evaluate the binaural contribution to spatial 
unmasking, particularly for spatial configurations in which large ILDs arise, and 4) 
investigate the degree to which results can be accounted for by a model of binaural 
interaction.  

The current study begins by presentation of the results of a behavioral experiment 
that measured spatial unmasking of pure tone targets. The individualized HRTFs used to 
generate headphone stimuli in the experiment are then analyzed and compared to 
estimates from a spherical head model (Brungart and Rabinowitz, 1999; Shinn-
Cunningham et al., 2000) and to HRTFs measured on a KEMAR acoustic manikin. The 
individualized HRTFs are then used to estimate the energetic and binaural contributions 
to spatial unmasking. Finally, binaural contributions to spatial unmasking, estimated by 
subtracting off energetic effects, are compared to predictions from the Colburn model of 
binaural processing (Colburn, 1977a; see also Stern and Shear, 1996) to evaluate whether 
the model can predict results for realistic sources near the listener. 
3.2 Spatial unmasking of nearby pure tone targets 
3.2.1  Methods 

3.2.1.1  Subjects 
Four graduate students with prior experience in psychoacoustic experiments 

(including author NK) participated in the study. One subject was female and three were 
male. Subject ages ranged from 25 - 28 years. All subjects had normal hearing as 
confirmed by an audiometric screening. 

3.2.1.2 HRTF measurement 
Individualized HRTF measurements were made with subjects seated in the center of a 
quiet classroom (rough dimensions of 5 x 9 x 3.5 meters; broadband T60 of approximately 
700 ms). Subjects were seated with their heads in a headrest so that their ears were 
approximately 1.5 m above the floor. Measurements were taken for sources in the right 
front horizontal plane (at ear height) for all six combinations of azimuths (0º, 45º, 90º) 
and distances (0.15 m, 1 m), as shown in Figure 3-1. 
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Figure 3-1 Spatial positions used in the study. HRTFs were measured at the positions 
denoted by open symbols. Target detection thresholds were measured for all spatial 
combination of six masker positions (open symbols) and ten target positions (filled and 
open symbols; targets simulated at the filled symbols used the corresponding HRTFs 
from the contralateral hemifield with left- and right-ear signals reversed). 

 
The Maximum-Length-Sequence (MLS) technique (Vanderkooy, 1994) was used 

to measure HRTFs. Two identical 32,767-long maximum length sequences were 
concatenated and presented through a small loudspeaker using a 44.1 kHz sampling rate 
(details regarding the equipment are described below). The response to the second 
sequence was recorded. This measurement was repeated ten times in rapid succession and 
the raw measurements averaged in the time domain. This average response was cross-
correlated with the original sequence to estimate a 743-ms-long impulse response. No 
correction for the measurement system transfer function was performed, but the 
amplitude spectrum of the transfer-function of this measurement system was examined 
and found to vary by less than 2 dB and to cause no significant interaural distortion for 
frequencies between 400 and 1500 Hz (the frequency region important for the current 
study). The useful dynamic range of the measurements (taking into account the ambient 
acoustic and electrical noise) was at least 50 dB for all frequencies greater than 300 Hz.  

HRTFs were measured using a Tucker-Davis Technologies (TDT) signal 
processing system under computer control. For each measurement, the concatenated MLS 
sequence was read from the PC hard-drive and sent to a TDT D/A converter (TDT PD1), 
which drove an amplifier (TDT HB6) connected to a BOSE mini-cube loudspeaker. A 
Polhemus FastTrak electromagnetic tracker was used to ensure that the subject's head 
was positioned correctly relative to the loudspeaker (which was hand-positioned by the 
experimenter prior to each measurement). Miniature microphones (Knowles FG-3329c) 
mounted in earplugs and inserted into the entrance of the subjects' ear canals (to produce 
blocked-meatus HRTF recordings) measured the raw acoustic responses to the MLS 
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sequence. Microphone outputs drove a custom-built microphone amplifier that was 
connected to a TDT A/D converter (TDT PD1). These raw results were stored in digital 
form on the computer hard-drive for off-line processing to produce the estimated head-
related impulse responses. 

HRTFs measured as described above include room echoes and reverberation. To 
eliminate room effects, time-domain impulse responses were multiplied by a 6-ms-long 
cos2 time window (rise/fall time of 1 ms) to exclude all of the reverberant energy while 
retaining all of the direct-sound energy. The resulting "pseudo-anechoic" HRTFs were 
used to simulate sources (and in all subsequent analysis).  

HRTFs were measured only for sources in the right hemifield. To simulate 
sources in the left hemifield, HRTFs from the corresponding right-hemifield position 
were used, exchanging the left and right channels (i.e., left/right symmetry was assumed; 
given that only pure tone targets were simulated in the left hemifield, this approximation 
should introduce no significant perceptual artifacts in the simulated stimuli). 

3.2.1.3  Stimulus generation 
Target stimuli consisted of 165-ms-long pure tones (500 or 1000 Hz) gated on and 

off by 30-ms cos2 ramps. The T was temporally centered within a broadband, 250-ms-
long masker. On each trial, the M token was randomly chosen from a set of 100 pre-
generated samples of broadband noise that were digitally low-pass filtered with a 5000 
Hz cutoff frequency (9th order Butterworth filter, as implemented in the signal-processing 
toolbox in Matlab, produced by the Mathworks, Natick, MA).  

T and M were simulated as arising from different locations in anechoic space by 
convolving the stimuli with appropriate individualized HRTFs. The simulated spatial 
configurations included all combinations of T at azimuths (-90°, -45°, 0°, 45°, 90º) and 
distances (0.15 m, 1 m) and M at azimuths (0°, 45°, 90˚) and distances (0.15 m, 1 m). A 
total of 60 spatial configurations were tested (10 T locations x 6 M locations; see Figure 
3-1).  

For nearby sources, keeping the M presentation level constant would result in the 
received level (at the subject's ears) varying widely with M position. In order to keep the 
received level of M relatively constant, the levels of the HRTF-processed M stimuli were 
normalized to fix the RMS energy falling within the equivalent rectangular band (ERB; 
Moore, 1997) centered on the T frequency at the ear receiving the more intense M signal 
(the right ear for all of the tested configurations). For the 500-Hz center frequency, a 100 
Hz ERB was used. For the 1000-Hz target, the ERB width was set to 136 Hz. The right- 
(louder-) ear RMS masker level in the ERB was fixed at 64 dB SPL (the values used to 
equalize the masker for each M location are shown in Figure 3-4). The amounts by which 
M was normalized were added back to the raw measured thresholds to predict the amount 
of spatial unmasking that would occur if the signal level emitted by a free-field M were 
held constant (note that this analysis assumes that detection performance depends only on 
the target to masker ratio or TMR and is independent of the overall M level). 

Stimulus files, generated at sampling rate of 44.1 kHz, were stored on the hard 
disk of the control computer (IBM PC compatible). In each trial, appropriate T and M 
samples were presented through Tucker-Davis Technologies (TDT) hardware. Left- and 
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right-ear T and M signals were processed through four separate D/A converters (TDT 
PD1). Target signals were scaled to the appropriate presentation level by a programmable 
attenuator (TDT PA4), summed with the masker signals (TDT SM3), and amplified 
through a headphone buffer (TDT HB6). The resulting binaural stimuli were presented 
via Etymotic Research ER-1 insert earphones. No filtering was done to compensate for 
the transfer characteristics of the playback system. A handheld RS 232 terminal 
(QTERM) was used to gather subject responses and provide feedback. 

3.2.1.4  Experimental procedure  
Behavioral experiments were performed in a single-walled sound-treated booth. 
A 3-down-1-up, three-interval, two-alternative, forced-choice procedure was used 

to estimate detection thresholds (Levitt, 1971), defined as the 79.4% correct point on the 
psychometric function. Each run started with the T at a clearly detectable level and 
continued until 11 "reversals" occurred. The T level was changed by 4 dB on the first 
reversal, 2 dB on the second reversal, and 1 dB on all subsequent reversals. For each 
adaptive run, detection threshold was estimated by taking the average T presentation 
level over the last six reversals. At least three separate runs were performed for each 
subject in each condition. Final threshold estimates were computed by taking the average 
threshold across the repeated adaptive threshold estimates. Additional adaptive runs were 
performed as needed for every subject and condition to ensure that the standard error in 
this final threshold estimate was less than or equal to 1 dB.  

The study was divided into two parts, one measuring thresholds for the 500-Hz T 
and one for the 1000-Hz T. Three subjects performed each part (two of the four subjects 
performed both). For each target, subjects performed multiple sessions consisting of ten 
runs. Subjects were allowed to take short breaks between runs within one session, with a 
minimum 4-hour break required between sessions. Each subject performed one initial 
practice session consisting of four practice runs and six runs measuring detection 
thresholds for NoSo and NoSπ conditions (where NoSo represents a sinusoidal diotic 
signal, i.e., with zero interaural phase, in the presence of a diotic noise; NoSπ represents a 
sinusoidal signal with interaural phase difference equal to π in the presence of a diotic 
noise). Subjects then performed eighteen additional sessions (180 runs; 3 runs each of 
every combination for 6 T positions and 10 M positions). In each of these sessions, a full 
set of thresholds was determined for one M position (the order of the 10 T positions was 
randomized within each session). These sessions were grouped into three blocks of six, 
each block containing a full set of thresholds. The order of M positions was separately 
randomized for each block and subject. Each subject performed approximately 20 hours 
of testing per T frequency.  
3.2.2  Results 

3.2.2.1  Binaural masking level difference 
Table 3-1 shows the binaural masking level difference (BMLD; see Durlach and 

Colburn, 1978), defined as the difference in T detection threshold in the NoSo and NoS� 
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conditions. As expected from results of previous studies, BMLDs are larger for the 500-
Hz T (where BMLDs ranged from 11 – 16 dB) than the 1000-Hz T (where BMLDs 
ranged from 7 – 14 dB). Also consistent with previous reports, inter-subject differences 
in the BMLD are large and fairly consistent across T frequency. For instance, Subject S1 
has the largest BMLDs at both T frequencies whereas Subject S2 has the smallest 
BMLDs at both frequencies. 

3.2.2.2  Spatial unmasking 
The amount of “spatial unmasking” is defined as the change in the energy that T 

would have to emit to be just detectable when at the simulated location compared to the 
energy emitted by a just-detectable T located at the same position as M. In order to 
estimate the T detection threshold when the emitted level of M is held constant, the 
amount by which the M was normalized was first added back to the raw T detection 
thresholds. Then, an average of the thresholds when T and M are at the same location was 
computed, and this value was subtracted from all the thresholds to obtain an estimate of 
spatial unmasking (i.e., the amount by which detection thresholds improve with spatial 
separation of T and M).  
 
 
 
 
 
 
 
 

 Measured BMLD (dB) 

 Individual Subjects Subject 

 S1 ( ) S2 ( ) S3 ( ) S4 ( ) Average 

500 Hz 15.6 11.0 14.5  13.7 

1000 Hz 13.1 7.5  8.7 9.8 

Table 3-1 Binaural masking level differences 
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Figure 3-2 Spatial unmasking for the 500-Hz T. Each panel plots spatial 

unmasking (the difference between target detection threshold when T and M are at the 
same spatial location and when T and M are in the spatial configuration denoted in the 
plot) as a function of T azimuth for a fixed M location. Across subject averages are 
plotted for T distances of 15 cm (thick solid lines) and 1 m (thin solid lines). Individual 
subject results are plotted as symbols. Dashed lines show the estimated energetic 
contribution to spatial unmasking. The spatial configurations of T and M represented in 
each panel are denoted in the panel legend. 
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Figure 3-3 Spatial unmasking for the1000-Hz T. See caption for Figure 3-2.  

 
Figure 3-2 and Figure 3-3 plot the amount of spatial unmasking of 500- and 1000-

Hz targets, respectively, for the across-subject average (solid lines) and the individual 
subjects (symbols. Dashed lines show predicted energetic effects at the better ear 
discussed in Section 3.4). Individual subject results were calculated by averaging the 
adaptive-run threshold estimates over all repetitions for each spatial configuration. 
Across-subject averages were calculated by averaging these individual-subject averages. 

For the spatial configurations tested, the amount of spatial unmasking spans a 
range of over 50 dB, with larger unmasking observed at 500 Hz than at 1 kHz. While 
subjects generally show similar patterns of results, inter-subject differences are large. For 
instance, Subject S1 shows as much as 10 dB more unmasking than the other subjects 
[e.g., when T is at (90˚, 15 cm) and M is at (0˚, 1 m), Figure 3-2 and Figure 3-3, thick 
lines in panel a]. However, this same subject consistently shows the least unmasking 
when M is at (90˚, 15 cm) and T is at 1 m (thin lines in panel f). 



23 

 

Despite the large inter-subject differences, overall trends are similar across 
subjects and for both 500- and 1000-Hz targets. Unsurprisingly, for both target 
frequencies, positioning T near to the subject (thick solid line in each panel of Figure 3-2 
and Figure 3-3) improves T detectability compared to when T is far from the subject (thin 
solid line in each panel). Similarly, positioning M near the subject (lower panels) 
degrades T detectability compared to when M is farther from the subject (upper panels). 
For sources within reach, examined in this experiment, the source distance matters even 
when both T and M are at the same distance. Specifically, the amount of unmasking due 
to angular separation of T and M increases with decreasing distance (thin lines in panels 
a,b,c show less unmasking than thick lines in panels d,e,f). 

To a first order approximation, changes in M distance cause a simple shift in the 
amount of spatial unmasking (i.e., results in the upper panels are essentially the same as 
results in the lower panels shifted upward by 10-15 dB). However, closer inspection 
shows that the interaction of azimuth and distance is more complex. For example, when 
M is at 45˚ or 90˚ and T is at 15 cm, the change in spatial unmasking with T angle is 
greater when M is at 15 cm than when M is at 1 m (thick lines in panels b,c vs. e,f). 
Changing T distance also causes complex effects; the amount of spatial unmasking varies 
more with T angle when T is close to the listener (thick lines) compared to when T is at 
the farther distance (thin lines). 

In general, separating T and M in azimuth improves T detectability compared to 
when T and M are in the same direction, independent of whether T and M distances are 
the same or different. For instance, when M is at 0˚ the lowest points in each plot arise 
when T is at 0˚ (leftmost panels in Figure 3-2 and Figure 3-3); when M is at 45˚ the 
lowest points arise when T is at 45˚ (middle panels). However, when M is at 90˚, angular 
separation of T and M does not always increase the amount of unmasking. For instance, 
for both the 500-Hz and 1000-Hz T with M at (90˚, 1 m), there is less spatial unmasking 
when the 15-cm T is at 45˚ than when it is at 90˚ (Figure 3-2 and Figure 3-3, thick line in 
panel c). Similarly, when M is at (90˚, 15 cm) and T is at 1 m, the amount of unmasking 
is either equal for T at 45˚ and 90˚ (500-Hz T: Figure 3-2, thin line in panel f) or greater 
when T is at 90˚ compared to when T is at 45˚ (1000-Hz T: Figure 3-3, thin line in 
panel f).  
3.2.3  Discussion 

Both the size of the BMLD and the amount of spatial unmasking varies from 
subject to subject. Differences in spatial unmasking may be partially explained by the 
inter-subject differences in the size of the BMLD. For instance, Subject S1 has the largest 
BMLDs and exhibits the most spatial unmasking. However, differences in spatial 
unmasking could also be due to differences in the acoustic parameters in the individually-
measured HRTFs. Acoustic differences in the measurements and the binaural 
contribution to spatial unmasking are considered further in Section 3.4. Taken together, 
these analyses suggest that inter-subject differences in spatial unmasking are affected 
both by differences in acoustic cues and in different sensitivities to binaural cues. 

Many of the current results follow easily predicted patterns. Moving T closer to 
the subject improves detection performance (as expected on the basis of an increase in the 
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level of T reaching the listener); conversely, moving M closer degrades detection 
performance (as expected when the level of M at the ears increases). Separating T and M 
in angle improves detection performance for most spatial configurations, and the amount 
of this improvement increases as the sources are moved closer o the head. However, there 
are other effects that are less intuitive. Unmasking varies less with T azimuth for a 15-cm 
M than for a 1-m M. For the same angular separation of T and M, unmasking decreases 
with the laterality of M. Finally, when T and M are at different distances and M is at 90˚, 
the amount of unmasking can actually decrease when T is at 45˚. 

Apparent discrepancies in the amount of spatial unmasking due to angular 
separation of T and M observed in previous studies are actually consistent with the 
current results. For example, the current study found more spatial unmasking for 1 m 
sources when M is at 0˚ (Figure 3-2 and Figure 3-3, panels a and d) than when M is at 90˚ 
(panels c and f). Thus, the relatively large amount of spatial unmasking observed by 
Gatehouse (1987) compared to that found by Santon (1987) may be due to the fact that 
Gatehouse fixed M in front of the listener and varied T azimuth, whereas Santon fixed T 
in front of the listener and varied M azimuth. In other words, all of these results are 
consistent with the idea that the amount of spatial unmasking is larger when M is in front 
of the listener and T is displaced laterally than when T is in front of the listener and M is 
angularly displaced. 
3.3 HRTF measurements 

The acoustic factors that influence spatial unmasking can be characterized by 
analysis of the HRTFs used in the simulations. Three acoustic characteristics of the 
HRTFs influence the performance in a spatial unmasking task: the magnitude spectra of, 
the interaural level differences (ILDs) in, and the interaural time differences (ITDs) in the 
signals reaching the two ears. The magnitude spectra of the HRTFs determine the 
intensity of the sound at the ears and thus the amount of spatial unmasking due to energy 
effects. ITDs and ILDs determine the amount of binaural unmasking. In this section, 
these parameters are analyzed for the individualized HRTFs used in the previous 
experiment. 

HRTFs from the individualized HRTFs are also compared to values measured for 
a KEMAR acoustic manikin and predicted by a spherical model of the head. While the 
literature contains descriptions of both KEMAR (Brungart and Rabinowitz, 1999) and 
spherical-head model (Duda and Martens, 1998; Shinn-Cunningham et al., 2000) HRTFs 
for sources near the listener, the current analysis compares these “generic” models to 
HRTFs from human subjects to determine whether the models capture the acoustic 
effects that are important for predicting the amount of spatial unmasking as a function of 
nearby T and M locations.  
3.3.1  Methods 

KEMAR HRTFs were measured using a procedure identical to that used for the 
human listeners (see description in Section 3.2). HRTF predictions for a spherical head 
model (Duda and Martens, 1998; Brungart and Rabinowitz, 1999; Shinn-Cunningham et 
al., 2000) were computed using a head with radius of 9 cm and diametrically-opposed 
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ears. These results are compared to the HRTFs measured for the four subjects who 
participated in the spatial unmasking experiment. 

For all of the HRTFs, the magnitude spectra, ILD, and ITD were determined for 
the equivalent rectangular band (ERB) centered at a given frequency. Magnitude spectra 
were calculated as the RMS energy in the HRTF falling within each ERB filter (100-Hz 
width centered at 500 Hz and 136-Hz width centered at 1000 Hz). ILDs were computed 
as the difference in the magnitude spectra for the left and right ears. ITD was first 
estimated as a function of frequency by taking the difference between the right- and left-
ear HRTF phase angles at each frequency f and dividing by 2πf. The ITD in each ERB 
filter was then estimated as the average of the ITD values for the frequencies falling 
within each ERB filter. 
3.3.2 Results  

3.3.2.1 Energetic effects 
Figure 3-4 shows the magnitude of the ERB-filtered HRTFs at 500 and 1000 Hz 

for the left ear relative to a source at (0˚, 1 m). (Recall that HRTFs were measured only 
for sources to the right of the listener and that this analysis assumes left-right symmetry.) 
Results are shown for individual human subjects (symbols), the across-human-subject 
average (solid line), KEMAR (dotted line), and a spherical head model (dashed line).  

Unsurprisingly, for both frequencies the spectral gain increases with decreasing 
distance. However, in addition to an overall shift in level, the dependence of the HTRF 
level on source azimuth differs for the two distances. Specifically, for the 15 cm distance, 
the gain to the ipsilateral ear grows rapidly with source eccentricity compared to the 1 m 
distance (the gain to the contralateral ear changes similarly with source angle for both 
distances). 

Overall, inter-subject differences are modest for the more distant source (lower 
plots in each panel). However, there are large inter-subject differences for the 15 cm 
source positions. For instance, for both of the analyzed frequencies the 15-cm HRTF gain 
for Subject S1 is 5-10 dB larger than for the other subjects, except at 45˚, where it is 
comparable to that of other subjects.  
KEMAR measurements and spherical-head predictions are similar to the measurements 
taken on the human subjects: both KEMAR and spherical-head results generally fall 
within the range of values observed for the four human subjects. However, there are a 
few source positions for which the KEMAR and spherical-head results deviate from the 
human measurements. KEMAR and spherical head results generally overestimate the 
HRTF gain for a source at 45 and underestimate the gain at 1000-Hz when the sound 
source is ipsilateral to the ear being analyzed. 

While intuitively we expect the level of the signal reaching the ears to vary 
monotonically with lateral angle of the source, human HRTF measurements show that 
this is not strictly true. In particular, the 1000-Hz human measurements show that less 
energy reaches the contralateral ear when a source is at 45˚ than when it is at 90˚. 
Similarly, at 500 Hz the gain to the contralateral ear is comparable for 45˚ and 
90˚ sources rather than decreasing for the 90˚ source. This nonmonotonicity, which is 
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likely due in part to the acoustic “bright spot” (e.g., see Brungart and Rabinowitz, 1999), 
is underestimated in both the spherical-head model and KEMAR HRTFs, especially at 
1000 Hz. 
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Figure 3-4 Left-ear HRTF spectrum levels in ERB filters, relative to the left-ear 

HRTF for a source at (0˚, 1 m). Results are shown for individual listeners, KEMAR, and 
the spherical head model as a function of source position. a) 500 Hz. b) 1000 Hz.   
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Figure 3-5 ILDs and ITDs in HRTFs for individual subjects, KEMAR manikin, and the 
spherical head model. a) 500 Hz. b) 1000 Hz. 
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3.3.2.2 Interaural differences 
 Figure 3-5 shows the ILDs and ITDs in the measured HRTFs at 500 and 1000 Hz 

(panels a and b, respectively) for the spatial positions used in the study. As in Figure 3-4, 
results for individual subjects (symbols), the across-human-subject average (solid line), 
KEMAR (dotted line), and a spherical head model (dashed line) are shown. 

ILDs (left side of figure) were calculated directly from the measurements plotted 
in Figure 3-4. As a result, there are large inter-subject differences in the ILDs that are 
directly related to the inter-subject differences in the monaural spectral gains; for 
instance, Subject S1 has much larger ILDs for the 15 cm source than any of the other 
subjects.  

As expected, ILDs are much larger for sources at 15 cm compared to 1 m, with 
ILDs at 500 and 1000 Hz approaching 20 dB for the nearby sources at 90˚. The spherical-
head and KEMAR results tend to underestimate ILDs, although for the 500-Hz, 15-cm 
sources, both spherical-head and KEMAR results are within the range of human-subject 
observations. Discrepancies are most pronounced for a 1000-Hz source at a distance of 1 
m and are greater for the spherical-head predictions than KEMAR measurements. 

ITDs (right side of figure) vary primarily with source angle and change only 
slightly with distance and frequency. For most of the measured locations, both spherical-
head and KEMAR results are in close agreement with human measurements. The only 
discrepancy between human results and model results is observed in the 500-Hz data, 
where the KEMAR measurements tend to have larger ITDs than the values measured in 
the human HRTFs.  
3.3.3  Discussion 

Overall, both spherical-head and KEMAR HRTFs provide reasonable 
approximations for how acoustic parameters in human HRTFs vary with source location. 
However, these models of human HRTFs produce small but consistent prediction errors 
(e.g., overestimating the gain at the contralateral ear when a source is at 45˚; 
underestimating the ILD for sources off midline, particularly at the 1 m distance). 

Inter-subject differences in the HRTFs are large, especially for nearby sources. Of 
the four subjects, one subject showed consistently larger spectral gains and consistently 
larger ILDs than the other subjects when the source was at 15 cm. While it is possible 
that some of the inter-subject differences arise due to inaccuracies in HRTF measurement 
(e.g., due to hand-positioning the loudspeaker), the fact that one subject has consistently 
larger gains and ILDs for all nearby source locations suggests that real anatomical 
differences rather than measurement errors are responsible for the observed effects. It is 
also interesting to note that the observed inter-subject differences are much smaller for 
the 1 m source, suggesting that inter-subject differences in HRTFs are especially 
important when considering sources very close to the listener. 
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3.4 Energetic and binaural contributions to spatial unmasking 
3.4.1  Analysis 

For each subject, estimates of the energetic and binaural contributions to spatial 
unmasking were derived from the acoustic parameters of the HRTFs and the behavioral 
thresholds. 

The energetic contribution to spatial unmasking was estimated by calculating the 
TMR at the better ear for each spatial configuration when T and M emit the same level 
(and thus would cause a TMR of zero when at the same location).  The resulting TMR 
predicts the amount by which T thresholds decrease due to energetic effects at the better 
ear (i.e., the TMR is the same magnitude as but opposite in sign to the expected 
contribution of energetic effects to spatial unmasking). Across-subject average 
predictions were computed by averaging these estimates across subject. The binaural 
contribution to spatial unmasking was estimated for each subject by subtracting the 
estimated energetic contribution to spatial unmasking (derived from individually-
measured HRTFs) from the individual behavioral estimates of spatial unmasking. 
3.4.2  Results  

3.4.2.1  Energetic contributions to spatial unmasking 
While inter-subject differences in the energetic contribution to spatial unmasking 

are large, the trends in the across-subject average data capture the important features of 
the individual data. For brevity, only the across-subject averages are presented in Figure 
3-2 and Figure 3-3 (for the 500- and 1000-Hz T, respectively, shown by dashed lines). 
For all spatial configurations tested, the behaviorally-observed amount of spatial 
unmasking either equals or is larger than the predicted spatial unmasking due to energy 
effects. Thus, even when there are large ILDs in the signals reaching the listener, binaural 
performance is always better than or equal to predicted performance when listening 
monaurally with the acoustically-better ear.  

Better-ear energetic effects account for a large portion of the observed spatial 
unmasking when T and M are in the same direction and for the large influence of T 
and/or M distance on spatial unmasking at all T/M configurations. Generally, angular 
separation of T and M increases the energetic contribution to unmasking. However, when 
M is at 90˚, energetic effects either decrease or are roughly the same when T is at 45˚ 
compared to 90˚. Energetic contributions to unmasking change more with target azimuth 
when T is at 15 cm than at 1 m, primarily due to the fact that for nearby sources, small 
positional changes cause large changes in the relative distance from source to the ear. 

Finally, energetic contributions to unmasking are relatively more important (i.e., 
account for a greater percentage of the observed amount of spatial unmasking) for the 
1000-Hz T than the 500-Hz T. This is true both because the energetic effects are 
somewhat larger and because the additional spatial unmasking for which energy effects 
cannot account is smaller at 1000 Hz compared to 500 Hz. 
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Figure 3-6 Estimated binaural contribution to spatial unmasking for the 500-Hz 
T. Each panel plots the amount of binaural unmasking for one M position for both the 15-
cm and 1-m T. Symbols show estimates for individual subjects with error bars showing 
the range of results across multiple adaptive runs. Lines trace a 2-dB range around the 
predicted amount of binaural unmasking from the Colburn (1977a) model for the 15-cm 
(dashed black lines) and 1-m (solid gray lines) T. The layout of the spatial configurations 
of T and M represented in each panel are shown in the Figure legend. a) Subject S1 b) 
Subject S2. c) Subject S3. 

 

3.4.2.2 Binaural contributions to spatial unmasking 
Figure 3-6 and Figure 3-7 show the estimated binaural contribution to spatial 

unmasking for the 500-Hz and 1000-Hz T. Plots show individual-subject estimates 
derived from behavioral data and HRTF analyses as symbols (the lines plot model 
predictions, derived and discussed in Section 3.5). 

Even though inter-subject differences are large, there are a number of trends that 
are consistent across subjects. Unsurprisingly, there is no binaural unmasking when T and 
M are at the same spatial location. In fact, only Subject S1 shows any binaural unmasking 
(and only for the 500 Hz T) when T and M are at the same off-median-plane direction but 
at different distances (Figure 3-6 panel a, M at 45°, 15 cm). Overall, T distance has 
relatively little impact on results (compare circles and squares within each panel). 
However, M distance does influence results (compare upper panels and lower panels): 
binaural unmasking decreases when M is at 15 cm compared to 1 m, particularly for the 
500-Hz results when M is located at 90˚. 

The binaural contribution to spatial unmasking is larger for the 500-Hz T than the 
1000-Hz T. For both T frequencies, the amount of binaural unmasking tends to be largest 
when M is at 0˚ (left panels) and decrease as M is displaced laterally (middle and right 
panels). Consistent with this observation, the change in binaural unmasking with T angle 
is smaller when M is laterally displaced than when M is at 0˚, particularly for the 1000-
Hz T. For instance, for Subject S1 binaural contributions to spatial unmasking for the 
1000-Hz T range from 0-8 dB when M is at 0˚ (depending on T azimuth); however, when 
M is at 90˚, binaural unmasking is roughly constant, independent of T angle (roughly 0-2 
dB for the 15-cm M; roughly 2-4 for the1-m M). 

The angular separation of T and M that leads to the greatest amount of binaural 
unmasking depends on T frequency. For the 500-Hz T, binaural unmasking tends to be 
greatest when T and M angles differ by about 90˚; however, for the 1000-Hz T, binaural 
unmasking tends to be greatest when T and M angles differ by roughly 45˚. 
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Figure 3-7 Estimated binaural contribution to spatial unmasking for the 1000-Hz T. See 
caption for Figure 3-6. a) Subject S1 b) Subject S2. c) Subject S4. 
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3.4.3  Discussion 

Energetic factors contribute significantly to spatial unmasking for all of the spatial 
configurations tested. Energetic effects are larger at 1000 Hz than 500 Hz and are larger 
when T is at 15 cm compared to when T is at 1 m. The energetic contribution to spatial 
unmasking does not always increase monotonically with angular separation of T and M; 
in particular, when M is at 90˚, displacing T toward the median plane can lead to 
decreases in the TMR at the better ear, especially if T and M are at different distances. 
This result that helps explain why angular separation of T and M does not always 
improve detection performance. 

Subjects show large differences in their ability to use binaural cues in detection 
tasks. For Subject S1, binaural differences can decrease detection thresholds by as much 
as 12 dB at 500 Hz, while for Subject S2 they provide at most 7 dB of unmasking. These 
differences in spatial unmasking roughly correlate with differences in BMLDs (Table 
3-1); however, inter-subject differences in binaural sensitivity for one masker location do 
not predict results in other spatial configurations. For example, Subjects S1 and S3 show 
much more unmasking than Subject S2 in the 500-Hz conditions when M is at 0˚. 
However, when M is at 90˚, all three subjects exhibit essentially the same amount of 
binaural unmasking. This result suggests that inter-subject differences in binaural 
sensitivity cannot be fully captured with a single “binaural sensitivity” parameter at each 
frequency (the degree to which inter-subject differences can be predicted by the Colburn, 
1977a model is considered further in Section 3.5). Instead, it seems that the distribution 
of the binaurally sensitive units as a function of the ITD and/or ILD might differ from 
subject to subject. 

The magnitude of interaural level differences in M appears to have a large effect 
on the amount of binaural masking. Binaural unmasking is greatest when M is at 0˚ (and 
ITDs and ILDs in M are near zero); when M is at 45˚ and 90˚, the amount of binaural 
unmasking decreases. When M is off to the side, the binaural contribution to spatial 
unmasking is also smaller when M is at 15 cm compared to 1 m. These effects are 
consistent with past reports showing that the BMLD decreases with masker ILD (e.g., see 
Durlach and Colburn, 1978, p. 433). 

In general, the maximum difference in IPD cues for T and M arises when the 
ITDs for T and M differ by one-half the period of the T frequency. For a 500-Hz T, the 
ITDs in T and M need to differ by roughly 1 ms to maximize binaural unmasking. For a 
1000-Hz T, the ITDs in T and M need to differ by roughly 500 µs. This explains the 
dependence of maximal binaural unmasking on T and M separation and frequency: 
results in Figure 3-5 show that an angular separation of about 90˚ causes T and M ITDs 
to differ by roughly one ms (maximizing IPD differences in T and M for a 500-Hz T) 
whereas an angular separation of about 45˚ causes T and M ITDs to differ by roughly 500 
µs. 
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3.5 Comparison of binaural unmasking to model predictions 
3.5.1  Analysis 

Subject-specific predictions of binaural unmasking were calculated using a 
modified version of the Colburn (1977a) model (a description of the current 
implementation of the model is provided in the Section 3.7 Appendix). Predictions 
depend on six parameters, evaluated at the T frequency: the ITDs and ILDs in both T and 
M; the binaural sensitivity of the listener; and the masker spectral level at the louder ear 
relative to absolute, monaural detection threshold, in quiet (parameter K).  

The ITDs and ILDs used in the predictions were taken from the analysis of the 
cues present in the HRTFs. The ITD and ILD in M were calculated from the values 
averaged over the ERB filter centered on the T frequency (see Figure 3-5). The ITD and 
ILD in T were taken directly from the HRTF values at the T frequency (not averaged 
over the ERB). Binaural sensitivity at each frequency was set to the measured BMLD for 
each subject (Table 3-1). For both the 500- and 1000-Hz targets, the value of the K 
parameter was set to 44 dB/Hz. 
3.5.2  Results 

Model predictions are plotted alongside behavioral estimates of the binaural 
contribution to spatial unmasking in Figure 3-6 and Figure 3-7 (for the 500-Hz and 1000-
Hz targets, respectively). In order to be somewhat conservative in identifying conditions 
where the model fails to account for behavioral data, a range of ±1 dB is shown around 
the actual model predictions. 

Model predictions of binaural unmasking are non-negative for all spatial 
configurations. Predictions are exactly zero whenever T and M are at the same spatial 
location and positive whenever T and M have differences in either their IPDs or ILDs at 
the target frequency. Thus, in theory predictions of binaural unmasking are positive 
whenever T and M are at different distances but in the same direction (laterally displaced 
from the median plane) due to differences in ILDs in T and M. However, in practice, 
predictions are near zero for all configurations when T and M are in the same direction 
for Subjects S2, S3, and S4. Predictions for Subject S1 (who has very large ILDs for 15 
cm sources and who had the largest BMLDs at both frequencies) are greater than zero for 
both T frequencies when T and M are at different distances but the same (off-median-
plane) direction.  

Binaural unmasking predictions are generally larger at 500 Hz than 1000 Hz. At 
both frequencies, binaural unmasking varies with angular separation of T and M; 
however, the angular separation that maximizes the predicted spatial unmasking depends 
on frequency. As in the behavioral results, predicted binaural unmasking is greatest when 
T and M are separated in azimuth by 90˚ for the 500-Hz T and 45˚ for the 1000-Hz T, 
corresponding to separations that maximize the differences in T and M IPD at the target 
frequency. 

Also consistent with behavioral results, the maximum predicted amount of 
binaural unmasking decreases with masker ILD. As a result, the largest predicted amount 
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of binaural unmasking varies with M location (from panel to panel), systematically 
decreasing with M angle and decreasing when M is at 15 cm compared to 1 m. 

Model predictions capture much of the variation in binaural unmasking; however, 
there are systematic prediction errors that are large compared to the intra-subject 
variability. (Note that the standard error in the behavioral results is less than or equal to 1 
dB due to the experimental procedure. The error bars in the figure are more conservative, 
showing the range of thresholds obtained over multiple runs.) 

Details of how predictions compare to behavioral results are first examined for the 
500-Hz target (Figure 3-6). Predictions for Subject S1 agree well with behavioral results 
when M is at (0˚, 15 cm) and are fit reasonably well (with only one data point falling 
outside the model prediction range) for three other M locations [(45˚, 15 cm), (90˚, 15 
cm), and (90˚, 1 m)]. However, S1 predictions tend to overestimate binaural unmasking 
for two M locations [(0˚, 1 m) and (45˚, 1 m)]. For Subject S2, predictions match 
behavioral results reasonably well when M is at 0˚, independent of M distance (although 
there are isolated data points for which the model overestimates binaural unmasking), but 
systematically underestimate binaural unmasking when M is at 45˚ and 90˚ (for both M 
distances). Results for Subject S3 are similar to those of Subject S2: predictions are in 
good agreement with measurements when M is in the median plane but underestimate 
binaural unmasking when M is laterally displaced. 

Focusing on the 1000-Hz results (Figure 3-7), Subject S1 predictions generally 
overestimate binaural unmasking. For Subject S2, predictions generally underestimate 
binaural unmasking, except when M is at (45˚, 1 m), where predictions and 
measurements are reasonably close. Finally, predictions for Subject S4 either fit 
reasonably well or underestimate binaural unmasking when M is at 0˚ but overestimate 
binaural unmasking when M is at 45˚ or 90˚ (independent of M distance). 

Overall, predictions and behavioral results are in better agreement when M is in 
the median plane than when M is at 45˚ or 90˚ and for the 500-Hz data compared to the 
1000-Hz data. 
3.5.3 Discussion 

The Colburn model assumes that a single value representing binaural sensitivity at 
a particular frequency can account for inter-subject differences in binaural unmasking. 
This binaural sensitivity parameter was set from BMLD measures taken with a diotic M 
and target that was either diotic (NoSo) or inverted at one ear to produce an interaural 
phase difference of π (NoSπ). These conditions are most similar to the spatial 
configurations in which M is directly in front of the listener (and M is essentially diotic). 
For most of the configurations with M at 0˚, model predictions agree well with observed 
results. In contrast, larger discrepancies between the modeled and measured results arise 
when M is at 45˚ and 90˚ (conditions in which there are significant ILDs in M). 

While there are some conditions in which the model predictions consistently over- 
or underestimate binaural unmasking (e.g., results for Subject S1 at 1000 Hz or for 
Subject S2 at 1000 Hz), there are other conditions for which changing the single subject-
specific “binaural sensitivity” of the model cannot account for discrepancies between the 
model predictions and the measurements (e.g., results for Subject S2 at 500 Hz or for 
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Subject S4 at 1000 Hz). The current results suggest that subjects differ not only in their 
overall sensitivity to binaural differences, but also in the dependence of binaural 
sensitivity on the interaural parameters in M and/or T. 

Even though there are specific conditions for which predictions fail to account for 
the results for a particular subject, the model captures many of the general patterns in 
results, including how the amount of binaural unmasking depends on the angular 
separation of T and M as well as the frequency of T and the tendency for binaural 
unmasking to decrease as the ILD in M increases. 
3.6 Summary and conclusions 

The current study is unique in measuring spatial unmasking when T and/or M are 
very close to the listener. Results show that for sources very close to the listener, small 
changes in source location can lead to large changes in detection threshold. These large 
changes arise due to large changes in both the TMR (affecting the energetic contribution 
to spatial unmasking) and ILDs (affecting the binaural contribution to spatial unmasking).  

The current results demonstrate how the relative importance of energetic and 
binaural contributions to spatial unmasking change with T and M location, including 
source distance (in contrast to previous studies that considered only angular separation of 
relatively distant sources). For nearby sources, the relative importance of energetic 
contributions to spatial unmasking increases as M distance decreases, probably due to 
increases in the ILD in M, which reduce the amount of binaural unmasking. The 
energetic contribution also increases as T distance decreases, primarily because the TMR 
changes more rapidly with T angle when T is near the listener. The relative importance of 
the energetic contribution to spatial unmasking increases with T frequency, both because 
the absolute magnitude of energetic factors increases and because the binaural 
contribution to unmasking decreases. For a 500-Hz T, binaural and energetic factors are 
roughly equally important when M is in the median plane. However, energetic factors 
become relatively more important as M is displaced laterally, in part because the amount 
of spatial unmasking decreases with masker ILD. This trend, which is predicted by the 
Colburn model, helps to explain large differences in the amount of spatial unmasking 
observed in previous studies (e.g., Ebata et al., 1968; Gatehouse, 1987; Santon, 1987). 
Specifically, more spatial unmasking arises when M is positioned in front of the listener 
and T location is varied (leading to near-zero ILDs in M) than when T is fixed in location 
and the angle of M is varied (leading to progressively larger ILDs in M with spatial 
separation of T and M). 

Binaural processing contributes as much as 10 dB to spatial unmasking for the 
spatial configurations tested (a value much larger than the 3 dB reported by Doll and 
Hanna, 1995). In theory, differences in T and M distance cause differences in T and M 
ILD when the sources are off the median plane, producing binaural unmasking. However, 
in the current study evidence of binaural unmasking due to differences in T and M 
distance were observed only for Subject S1, who had both the largest BMLDs and the 
largest ILDs of the four subjects in the study.  

Although monaural detection thresholds were not directly measured in the current 
study, binaural performance is always better than or equal to the performance predicted 
by analysis of the TMR at the better ear. Thus, the current results do not help to explain 
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previous results suggesting that binaural performance sometimes falls below monaural 
performance using the better ear alone, particularly for configurations with large ILDs 
(Bronkhorst and Plomp, 1988; Shinn-Cunningham et al., 2001). One important 
distinction between the current study and these previous reports is that the current study 
measured tone detection for relatively low-frequency tones, whereas both of the previous 
studies measured speech intelligibility, a suprathreshold task that emphasizes information 
at higher frequencies. Further studies are necessary to help determine when binaural 
stimulation may actually degrade performance compared to monaural, better-ear 
performance. 

Inter-subject differences in the amount of spatial unmasking are large and arise 
due to individual differences in 1) HRTFs, 2) overall binaural sensitivity, and 3) the way 
in which binaural sensitivity varies with spatial configuration of T and M.  The Colburn 
model of binaural processing predicts overall trends in behavioral measures of binaural 
unmasking, but fails to capture subject-specific variations in performance. The spatial 
configurations for which model predictions are least reliable are the positions for which 
large ILDs arise in M and/or T, conditions that have not been extensively tested in 
previous studies. The current results suggest that the Colburn model must be modified so 
that subject differences in binaural sensitivity vary not only in overall magnitude but as a 
function of the interaural differences in M. 

While the current model predictions cannot account for some small, but 
significant inter-subject differences, rough predictions of the amount of spatial 
unmasking capture most of the observed changes in detection threshold with spatial 
configuration. For instance, generic acoustic models of HRTFs (e.g., KEMAR 
measurements or spherical-head model predictions) combined with predictions of 
binaural unmasking using “average” model parameters should produce predictions that 
fall within the range of behavior observed across a population of subjects. 
3.7 Appendix 

A modified version of the model presented in Colburn (1977b) was used to 
predict the amount of binaural unmasking, defined as the difference in detection 
thresholds when T and M are at the same spatial location and when they are in different 
locations.  The predicted amount of binaural unmasking is computed as 
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where p(τ, f) represents the relative number of interaural coincidence detectors (i.e., 
neurons in the medial superior olive) tuned to ITD τ and frequency f; G(f) represents the 
synchrony of firings of the auditory nerve at frequency f; and γ(τ) is the envelope of the 
autocorrelation function of the auditory nerve fiber impulse response at autocorrelation 
delay τ. In the current realization of the model, function p(τ,f) was modified to allow for 
a frequency-dependence in the distribution of interaural coincidence detectors (as 
suggested by Stern and Shear,1996), using 
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G(f) is given by 
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γ(τ) is given by 
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where τ is in milliseconds.   
Finally, function R(α, K) characterizes the decrease in the number of activated 

auditory nerve fibers in the ear receiving the less intense signal as a function of masker 
ILD. The current implementation uses a modified version of Eq. 35 from Colburn 
(1977b): 
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where K is the ratio of the spectrum level at the louder ear to the detection 

threshold in quiet. This implementation of the model assumes that the auditory nerve 
fibers at each T frequency have thresholds uniformly distributed (on a dB scale) over a 
40-dB range above the absolute detection threshold for that frequency. 

 



40 

 

Chapter 4 Localization in reverberant rooms: effect of nearby walls 

and experience 

Abstract 

Localization accuracy was measured for sources in the right frontal quadrant of 
the listener's horizontal plane, at distances between 15 and 100 cm. Listeners were 
positioned at four different locations in the room: in the center, with their back close to a 
wall, with their left ear close to a wall, or in the corner. The mean (i.e., bias) and variance 
of the error in perceived azimuth and distance were analyzed. Results were influenced by 
experience and room position. Generally, variance decreased over time and increased 
with the acoustic complexity of the room position. Room position had no effect on 
perceived distance bias and a small but significant effect on the azimuthal bias. In 
particular, when the listener had his back to the wall, responses were biased medially. 
Experience affected the bias in both azimuth and distance for sources ahead of the 
listener, but not near the interaural axis. In addition, two of three listeners who started in 
the corner of the room showed a consistent distance bias, underestimating source 
distance. The effect of room position was stronger for nearby sources while the effect of 
experience was greater for far sources. No learning was observable within a single 
session. These results show that both experience and room positions affect auditory 
localization accuracy and reliability. 
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4.1 Introduction 
This study evaluates the ability of human listeners to localize nearby sound 

sources in an ordinary reverberant classroom. Two factors are specifically examined: how 
listener’s location in the room influences perception, and how the amount of experience 
with the task and room influences perception.  
4.2 Background 

Sound localization has traditionally been studied in an anechoic chamber, and has 
usually focused only on two of the three spatial dimensions: source azimuth and elevation 
(Wightman and Kistler, 1989; Makous and Middlebrooks, 1990; Wenzel et al., 1993). 
There are only a few studies that examined performance in reverberant environments, in 
either azimuth (e.g., Hartmann, 1983; Rakerd and Hartmann, 1985, 1986; Wagenaars, 
1990) or, more recently, in distance (Bronkhorst and Houtgast, 1999; Santarelli, 2000; 
Zahorik, 2000). These studies show that reverberation provides distance information 
(Bronkhorst and Houtgast, 1999; Santarelli, 2000; Zahorik, 2000) but slightly degrades 
azimuthal localization accuracy (Santarelli, 2000), and that the degradation of azimuthal 
perception can be overcome as a listener gains experience with the room (Shinn-
Cunningham, 2000). 

Brown (2001) performed an analysis of the effects of the room reverberation on 
acoustic characteristics of the sounds reaching the listeners’ ears. Using a KEMAR 
manikin, Brown measured the head-related impulse responses (HRIR) for several 
positions of the listener in a room (“room positions”) and various positions of the sound 
source relative to the listener (“source positions”). Brown showed that all the important 
localization cues (monaural spectrum, interaural level difference or ILD, and interaural 
time difference or ITD) are influenced by reverberation. Brown also showed that the 
effect of reverberation depends on both room position and source position. 

The anechoic acoustic cues for azimuthal perception are relatively well 
understood: the two most robust cues are the ITD and ILD, both of which grow with 
source laterality. Brown showed that both of these cues are altered by room 
reverberation. Specifically, reverberation increases the variance in both ITD and ILD 
across frequency. In addition, the ILD associated with a given source position can differ 
from one room position to another, for example, when there is a wall near the 
contralateral ear, the ILD is smaller. These results suggest than room reverberation may 
degrade localization accuracy in azimuth and increase variance in azimuth responses by 
introducing inconsistency in the internal cues over frequency. Similarly, the change in 
mean ILD with room position may cause a bias in perceived azimuth. However, Brown’s 
analysis examined the effects of reverberation by looking at HRTF – which ignores how 
cues change over time. As a result, wile this analysis gives some insight into the effects 
of reverberation, it does not fully explain how perception is influenced by room 
acoustics.  

Distance perception is hypothesized to be based on some correlate of the direct-
to-reverberant energy ratio (D/R) in the perceived sound (Bronkhorst and Houtgast, 
1999). For a given source distance, D/R changes with both room position and source 
angle relative to the listener. Thus, unless a listener uses a room-position and source-
angle dependent mapping of D/R to distance, perceived distance might be biased when 
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the listener is at certain room positions. Moreover, for nearby lateral sources the ILD 
changes with source distance providing a potential cue for distance perception (Brungart, 
1998; Shinn-Cunningham, Santarelli and Kopčo, 2000). Given that reverberation affects 
the ILD, distance perception should be affected by room acoustics if listeners base their 
distance judgments on ILD.  

Santarelli, Kopčo and Shinn-Cunningham (1999a) performed a localization study 
in a real room and found that the listeners’ performance improved over the course of the 
experiment, although no improvement was observed in a similar study performed in 
anechoic space (Brungart and Durlach, 1999). Because the rate of this learning was fairly 
slow (learning occurred over the course of days, across multiple sessions) Santarelli et al. 
(1999a) hypothesized that this improvement is due to the listeners’ subconscious learning 
of the acoustic properties of the room. The current experiment was performed in the same 
room and over a similar time scale as the study by Santarelli et al. (1999a). Thus, a 
similar “room learning” effect was expected in the current study. 
4.3 Experiment 

The current study investigates the influence of room position (acoustic effects that 
vary with the position of the listener in the room) and room learning (changes in 
performance due to listener’s experience in a particular room) on auditory localization. 
While seated at one of four positions in the room, listeners indicated the perceived source 
location of sounds originating in the horizontal plane at the level of their ears. Listeners 
were divided into two groups differing in the order in which the room positions were 
presented. Source location varied in both azimuth and distance relative to the listeners. 
Both the mean and standard deviation in the perceived azimuth and distance of the 
sources was evaluated to judge how experience and room acoustics influence 
localization. 
4.4 Methods 
4.4.1 Listeners 

Six paid graduate students (three male and three female) participated in the study. 
Their ages ranged from 23 – 28 years. One subject had prior experience in auditory 
localization experiments. All six subjects had normal hearing as determined by an 
audiometric screening. 
4.4.2 Stimuli and apparatus 

Stimuli consisted of five 150-ms-long pink-noise bursts separated by 30-ms-long 
gaps of silence. One of five random tokens of the stimulus was chosen for presentation in 
each trial. The stimuli had a wideband pink frequency spectrum (roll-off 6 dB/octave 
from 200-15kHz) and a 120-dB/octave roll-off out of band.  

A point source (Brungart, 1998) was used to present the stimuli, which were 
corrected for the non-flat spectral response of the point source by convolution with a 
linear-phase filter with a spectrum equal to the inverse of the point source’s response. To 
eliminate overall loudness as a distance cue, the RMS level of the stimulus was crudely 
normalized on each presentation by attenuating it proportionally to the distance from the 
head, then roving it by an additional ±7.5 dB. With the rove, the stimulus level at the 
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nearer ear was random and uniformly distributed between 44 and 59 dBA from trial to 
trial. 

Five pre-generated stimulus files were stored on the hard disk of the control 
computer. On each trial, one of the samples was randomly chosen, appropriately re-
scaled, and sent to the point source via a Cirrus CS4236 16-bit stereo sound card and a 
Crown power amplifier. A Polhemus FastTrak electromagnetic tracker was used to record 
the position of the subject’s head, the sound source position, and the subject’s response in 
each trial. 
4.4.3 Procedure 

The experiment was performed in an ordinary, empty classroom (size 
5 x 9 meters, T60 = 0.7 s, Figure 4-1a). Each subject performed four two-hour sessions, 
each from a different location in the room. These positions, shown in Figure 4-1a, 
differed in how close the nearest walls were relative to the subject. In the “center” 
location, the subject was far from any walls roughly in the middle of the room. In the 
“back” location, the subject was seated with his/her back facing the longer of the walls 
approximately in the middle of the wall (distance from the subject’s back to the wall was 
approximately 15 cm). In the “ear” location, the subject was in the same location as in the 
“back” location, except that the subject was rotated by 90° so that his/her left shoulder 
was approximately 15 cm from the wall. Finally in the “corner” location the subject was 
seated in the corner of the room with his/her shoulder approximately 15 cm from the 
shorter wall and his/her back approximately 15 cm from the longer wall. 

The subjects were divided into two groups depending on the order in which the 
room positions were tested. The conflicting factors group started in the center and ended 
in the corner positions (i.e., the subjects started in the acoustically simplest condition and 
ended in the most acoustically complex condition). For this group, the room learning and 
room position factors were expected to be in conflict. Specifically, room learning should 
lead to better performance in the last session, which was in the corner, however, the 
acoustic cues should lead to better performance in the center, which was performed first. 
The second, cooperating factors group started in the corner and ended in the center 
positions. For this group, the effects of both room learning and room position were 
expected to lead to better performance from session to session.  

In each of the four sessions, 300 trials were performed separated by breaks every 
50 trials. A practice session of 50 trials preceded the first session. Each trial started by the 
subject closing his/her eyes, after which the experimenter placed the source at a random, 
computer-generated position. The stimulus was then presented after which the 
experimenter moved the source to a neutral position. The subject was then allowed to 
open his/her eyes and point to the perceived location of the sound using a wand on which 
an electromagnetic position sensor was mounted. The sound source positions were 
distributed uniformly in azimuth in one of three 15°-wide bins (around 0, 45, or 90°) 
shown in Figure 4-1b. The distance dimension was logarithmically distributed.  
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Figure 4-1 a) Listener positions in room. The order of positions for the two subject 
groups (cooperating factors group and conflicting factors group) is shown by numerals 
and distinguished by font type (normal vs. outlines). b) Bins of locations for source 
presentation. 
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4.5 Results and discussion 
Results are analyzed in the dimensions of azimuth and distance. The azimuth 

error is defined as a (signed) difference between actual and perceived azimuth on a given 
trial. The distance error is defined as log10(perceived distance / actual distance) on a 
given trial. Both the mean and standard deviations in the azimuthal and distance errors 
are analyzed and discussed.  
4.5.1 Initial vs. final session 

4.5.1.1 Results 
Both factors of interest in this study, room position and room learning, have the 

largest effect on localization when comparing the initial vs. the final session. The effect 
of room learning is maximized between these two sessions because the sessions are 
maximally separated in time. Room position effects are maximized because the initial 
and final sessions were performed in the center vs. the corner of the room, that is, in the 
acoustically simplest vs. the most complex conditions. Figure 4-2 shows the results 
(mean and standard deviation in perceived azimuth and distance) in the initial vs. the 
final session. The thick lines plot the across-subject average performance for each subject 
group; the thin lines plot individual subject data. The conflicting factors group did the 
initial session in the center and the final session in the corner position. For the 
cooperating factors group the room position the ordering was reversed. 

The computation of the statistics shown in Figure 4-2 was as follows. For each 
subject and each room position, the error in each trial was computed as the (signed) 
difference between the perceived and actual azimuth (or log distance). Then the mean 
(i.e., bias) and standard deviation in this error was computed within each of the six source 
bins from Figure 4-1b (separately for each subject and each room position). Then, for 
each subject, the mean of these values (of the previous mean and standard deviation) was 
computed across the six source bins and these values are plotted as individual subject 
data in Figure 4-2. The group averages were computed by taking the mean of the 
corresponding values for the three subjects in a given group. 

Panel a in Figure 4-2 shows how the mean azimuthal bias changes between the 
two sessions. Overall, there is no consistent change in the bias in either subject group. 
Two of the three conflicting-factors subjects show a decrease in bias from the initial to 
the final session; two of the three cooperating-factors subjects show an increase from the 
initial to the final session. The across-subject average bias change from the initial to the 
final session is small in both groups relative to the intersubject variability. 
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Figure 4-2 Average bias and variability in signed response errors (averaged over source 
position) in the initial and the final experimental session. The conflicting factors group 
started in the center and ended in the corner position. This order was reversed for the 
cooperating factors group. a) mean azimuth bias computed as perceived - actual azimuth, 
in degrees; b) standard deviation in azimuth response; c) distance response bias computed 
as log10(perceived dist / actual dist); d) standard deviation in distance response. 
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 Figure 4-2c shows the average bias in perceived distance. The largest effect is an 
overall difference between the two subject groups: on average, the conflicting factors 
group overestimated distance by 3.6%, whereas the cooperating factors group 
overestimated distance by 20.2%. This effect is caused by a strong and consistent 
tendency for two of the subjects in the cooperating factors group to overestimate 
distance; independent of the session order or room position (the third cooperating-factors 
subject had a smaller bias). In general, there are large intersubject differences in distance 
perception (see Zahorik, 2002). Thus, the most parsimonious explanation for this 
difference between groups is that it is due to subject differences. There are no other clear 
trends in the overall distance bias.  

The standard deviation in azimuth and distance responses is shown in Figure 4-2 
panels b and d, respectively. Results show that there is an interaction between room 
learning and room position. For the cooperating factors group (full lines) the variability 
always decreases over time, whereas for the conflicting factors group (dashed lines) the 
variability is essentially constant relative to intersubject differences. These results suggest 
that room learning reduces response variability over time; however, variability in 
responses increases with the acoustic complexity of the signals reaching the listener (i.e., 
with room position).  

4.5.1.2 Discussion 
The rate of the learning effect observed in the standard deviation measures is 

fairly slow, similar to the results of Santarelli (2000). This confirms that whatever the 
listener learns while in one room position generalizes to other positions in the room.  

The effect of the change in the room position on response variability can be 
explained by the acoustical properties of the perceived sound. In the center of the room 
there are no nearby walls and the received reverberation is essentially independent of the 
sound source position and relatively less intense than for other room positions. In the 
corner, the pattern of reverberation is dominated by early reflections from nearby walls, 
the magnitude of which can sometimes be comparable to the magnitude of the direct 
sound. Since the intensity and timing of the early reflections change dramatically as a 
function of source position, it is not surprising that such reflections will increase response 
variability. 
4.5.2 Room position vs. room learning: detailed results 

Figure 4-3 presents a detailed analysis of the results of this behavioral study. The 
computation of the statistics shown in the figure was as follows. For each subject and 
each room position, the error in each trial was computed as the (signed) difference 
between the perceived and actual azimuth (or log distance). Then the mean (i.e., bias) and 
standard deviation in this error was computed within each of the six source bins from 
Figure 4-1b (separately for each subject and each room position). These values (the mean 
and standard deviation) were averaged across the subjects in each group to get the group 
means in columns 2 to 7 (thin lines). For each room position, averages across the values 
in columns 2-7 were computed and plotted in the corresponding panel 1. In addition, 
averages across the groups were computed and plotted in each panel (thick lines). Any 
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differences between the subject groups can be attributed to either subject differences or 
an effect of room learning. 

4.5.2.1 Mean azimuthal error 
Figure 4-3 panel a shows the mean difference between the actual and perceived 

azimuth of the sound sources. Averaged across the source bins (panel a1) there is no 
effect of learning (full vs. dashed thin lines). Data analyzed separately by the source bin 
(panels a2-a7) show interaction between the source azimuth and source distance. 
Averaged across the room positions, there is no bias for near lateral sources (panel a4) 
and negative bias for the other near bins (panels a2-a3). For far sources, there is no bias 
for the medial (panel a5), negative bias for the intermediate (panel a6), and positive to 
zero bias for the lateral sources (panel a7). 
The average graph (panel a1) shows also a small effect of room position on the bias: the 
back and corner positions are biased negatively while the center and ear positions have no 
bias. Also, there is an interaction between the room learning (thin lines) and the room 
position for medial sources (panels a2 and a5) exhibited in the relative changes in bias 
between the two groups in the back and ear positions. However, these effects are small 
compared to the within-subject and inter-subject variance in the data. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-3 Localization performance as a function of the listener position in the room 
(Center, Back, Ear, and Corner). The first column shows the average values across 
subjects and source position. Columns 2-7 show across-subject averages for different 
source position bins (shown in Figure 4-1). a) mean azimuth bias computed as 
perceived - actual azimuth, in degrees; b) standard deviation in azimuth response; c) 
distance response bias computed as log10(perceived dist / actual dist); d) standard 
deviation in distance response. 
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4.5.2.2 Variance in azimuthal perception 
Graphs in Figure 4-3b show the standard deviation in azimuthal error. Panels b2-

b7 show the standard deviation separately for each source position bin. These panels 
show that standard deviation grows with source azimuth (panel 2 vs. 3 vs. 4 and 5 vs. 6 
vs. 7) and is larger for near sources (panels 2 to 4) than for the far sources (panels 5 to 7). 
In some regions (far sources and near lateral sources, panels 4 to 7) there is large 
difference between the two subject groups, suggesting a possible effect of room learning.  

Results are averaged across source position bins in panel 1. The across-group 
average (thick line) shows that the amount of variability in subjects’ responses is largest 
for the corner and smallest in the center positions. This result can be explained by the 
presence of a number of early strong reflections that influence the perceived sound. For 
the corner position, the intensity and timing of the reflections changes dramatically with 
small changes in the sound source location. Thus, in addition to causing larger distortion 
of acoustic response variability cues, the early reflections alter cues in ways that depend 
on source and listener position, making this distortion difficult to overcome by learning. 
The gradual growth in the amount of response variability for the intermediate (back and 
ear) positions is consistent with this hypothesis. Comparing the two subject groups (thin 
lines) shows that room learning influences azimuth response variability. In particular, the 
conflicting factors group actually improves when moved from the center to the corner of 
the room, despite the increase in the complexity of the acoustic environment. This result 
confirms the conclusion from the overall analysis (Section 4.5.1) that the influence of 
experience on the variance in perceived azimuth is as strong as the influence of the room 
position. 

4.5.2.3 Mean distance error 
Graphs in Figure 4-3c plot the mean error in perceived distance. The average 

graph (Figure 4-3 panel c1) shows that the perceived distance error is essentially 
independent of the position of the listener in the room (consistent with results in Section 
4.5.1). In addition, while there is a consistent difference between the cooperating- and 
conflicting-factor groups, this difference is independent of both experience and room 
location and thus is most likely due to subject differences. This result does not support 
most current theories of distance perception (Bronkhorst and Houtgast, 1999; Santarelli, 
2000), which assume that the computation of perceived distance involves estimation of 
the amount of the direct-to-reverberant energy ratio. The amount of reverberant energy 
changes dramatically with the listener’s position and, in some cases, with the source 
azimuth relative to the listener (Brown, 2001). However, neither of these factors 
influences distance error. These results suggest either that the actual acoustic cue that is 
perceptually important, while varying with reverberation level is independent of the 
room-position-related changes in the reverberation pattern, or that the brain recalibrates 
how distance is computed by the “reverberation cue” depending on distance and source 
positions. 

Averaged across groups, an effect of the source location can be observed (panels 
c2 to c7). Panels c2-c5 show that the overall bias to overestimate distance is actually 
present only for nearby sources (although for very distant sources, subjects tend to 
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underestimate distance, Zahorik, 2000) and that it decreases with azimuth. The fact that 
the bias changes with azimuth suggests that listeners cannot compensate for the changes 
in reverberation cue due to the source azimuth.  

As was the case for the overall plot (panel c1), the results as a function of source 
location (panels c2-c7) averaged across subject groups (thick lines) show essentially no 
effect of room position. Comparison of the subject groups shows that the difference in 
bias between the groups is apparent only in some room and source positions (panels c2, 
c3, and c5). Also, the effect decreases with source laterality and with source distance.  

4.5.2.4 Variance in distance perception 
Figure 4-3d shows the standard deviation in distance response error. Averaged 

across source positions (panel 1), the standard deviation in distance error is largest when 
the listener is in the corner, and is smaller and essentially equal for the other three room 
positions. This result suggests that the variability in distance error is only affected by 
very large perturbations in the reverberation pattern.  

When the data are binned by the sound source position (Figure 4-3 panels d2-d7), 
no effect of room position is visible for far sources (panels d5-d7). The increased 
variance in distance perception for the corner position is driven only by an effect for 
nearby, lateral sources (panels d3-d4). This effect could be partially explained by the 
inaccuracy in the listener’s pointing to perceived position, which is larger for near than 
for far sources, however, the fact that the error is independent of distance for three out of 
the four room positions suggests that the increased variance in the corner of the room is 
an effect caused by the room acoustics. There are only two points where there is a large 
difference in performance between the two subject groups (panels d4 and d6), which 
supports the conclusion that the effect of room learning on the standard deviation in 
distance error is smaller than the effect on standard deviation in azimuth error.  

 
4.5.3 Effect of room learning for near vs. far sources 

Figure 4-4 presents an analysis of the interaction between the effect of learning 
and the listener’s position in the room as a function of the sound source distance. The 
change in the mean and standard deviation in the azimuth and distance errors are shown. 
In each panel, the data for the two different subject groups are shown as histograms. The 
histograms were generated as follows. For each subject and for the center and corner 
room positions, the error in each trial was computed as the (signed) difference between 
the perceived and actual azimuth (or log distance). Then the mean (i.e., bias) and standard 
deviation in this error was computed within each of the six source bins from Figure 4-1b 
(separately for each subject and each room position) and the difference between these 
values (the mean and standard deviation) was computed between the initial and the final 
session (i.e., corner - center for the conflicting-factors group and center - corner for the 
cooperating-factors group). Histograms of these differences were generated. Three 
separate histogram pairs are shown in each panel, one for the overall performance (left 
panel), one for near (center panel) and one for far (right panel) sources. The left-most 
graphs in each panel show the distribution of the 36 points (6 subjects x 6 source position 
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bins) that were averaged to generate the plots in Figure 4-2. The center and right-most 
graphs show the distribution of 18 points (6 subjects x 3 source position bins) separately 
for near or far sources.  

Results show that there is no clear change in bias either for azimuth or distance 
(the distributions are centered on zero), and no difference between subject groups (panels 
a and c). However, response variability tends to decrease over time for booth the 
cooperating-factors group and the conflicting-factors group (panels b and d). This effect 
is larger for the cooperating-factors group than the conflicting-factors group.  

Comparing near and far sources shows that for far sources, the decrease in 
response variability is essentially equally large for both groups. For near sources the 
decrease is still present in the cooperating-factors group data, while the data are centered 
at zero for the conflicting-factors group. This suggests that the effect of room learning 
increases with source distance from the listener. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-4 Effect of source distance on learning. Histograms show the change in 
performance between the initial and the final session for the conflicting factors group 
(dashed lines) and the cooperating factors group (full lines). Separate histograms in each 
panel show overall performance (left-hand graph), performance for near sources (center 
graph), and far sources (right-hand graph). Changes are computed as differences in a 
given parameter between the initial and the final session. a) change in the mean azimuth 
biases (mean azimuth bias computed as perceived - actual azimuth, in degrees); b) change 
in standard deviation in azimuth response; c) change in distance response bias (distance 
response bias computed as log10(perceived dist / actual dist)); d) change in standard 
deviation in diastase response. 
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Figure 4-4 (Caption on previous page) 
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4.5.4 Learning within a session 

Preceding analysis shows that there is a room learning effect when comparing the 
initial vs. the final experimental session. The present analysis evaluates whether the 
learning is visible on a much smaller scale, corresponding to one continuous session, i.e., 
1-2 hours. Figure 4-5 plots for each subject the difference in the mean and standard 
deviation of perceived azimuth and difference between the first and the second half of 
each experimental session. No systematic trends are observed. This result suggests that 
room learning is apparent only for time periods larger than two hours, or that breaks are 
required between sessions in order to observe any learning effect. 
4.6 Summary and conclusions 

The results of this study show that both the position of the listener in the room and 
the listener’s experience with the room influence the listener’s ability to accurately 
localize sounds. The main effect of both these factors is to affect the variability in 
responses. Decease in response standard deviation is observed over time, presumably due 
to the room learning effect. Also, the standard deviation is larger in the corner of the 
room than in the center, suggesting that when the room reverberation is more complex 
(e.g., in the corner) the variance in perceived location is larger. While the room location 
is roughly equally influential on variability in azimuth and distance, the room learning 
has a stronger effect on azimuth than distance. 

 Contrary to expectations based on current theories of distance perception, there is 
no effect of room position on the perceived distance bias. On the other hand, room 
learning influences distance bias for lateral sources.  

Finally, the room learning effect, while clear across several sessions (on a time 
scale of 6-8 hours performed over a course of weeks), is not observed within a session 
(on a time scale of 1-2 hours). 
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Figure 4-5 Effect of learning within a session. Difference in the mean and standard 
deviation in perceived azimuth and distance between the first vs. the second half of the 
experimental session. 
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Chapter 5 Auditory Localization in Rooms: Acoustic Analysis and 

Behavior1  

Abstract 
In an ordinary room, reverberation and echoes in the signals reaching a listener’s 

ears influence auditory localization performance. The energy of the echoes and 
reverberation depends on the position of the listener in the room as well as on the position 
of the sound source relative to the listener. In this chapter, the effects of echoes and 
reverberation are quantified through analysis of reverberant Head-Related Transfer 
Functions (HRTFs) measured in an ordinary classroom. HRTFs were measured for 
several human listeners and a KEMAR acoustic manikin at four different listener 
positions in the room and multiple source positions relative to the listener. Azimuthal 
localization performance was also measured for several listeners in the room as a 
function of listener position. Compared to the acoustic cues this performance was found 
to be less sensitive to a change in room location. The only similarity was found between 
the magnitude of frequency-to-frequency variations in basic localization cues and the 
variability in localization performance, demonstrating that localization accuracy 
decreases with increasing reverberant energy. 
5.1 Introduction 

In a room, the ability of human listeners to localize sounds is influenced by 
echoes and reverberation (which are henceforth collectively referred to as 
“reverberation,” for brevity; Santarelli, 2000). The effect of reverberation can be both 
beneficial and detrimental, improving distance perception and degrading azimuthal 
localization. However, the pattern of reverberation differs from room to room as well as 
from position to position within a given room. For a listener in the center of a room, most 
reflective surfaces are relatively far from the listener and reflections are diffuse for all 
source positions. On the other hand, when the listener is close to a wall, prominent early 
reflections arise whose magnitude and timing depend on the location of the source 
relative to the walls and to the listener.  

 The goal of this study is to analyze how localization cues in the signals 
reaching a listener’s ears are influenced by reverberation and to evaluate whether acoustic 
effects can account for how localization performance varies with a listener’s position in a 
room. A set of head-related transfer functions (HRTFs; see Santarelli, 2000) was 
measured for a manikin (KEMAR) located at different positions in a classroom. The 
effect of reverberation on interaural differences and spectral magnitude is evaluated by 
computing how these cues vary with source position relative to the listener and listener 
location relative to the room. Results are compared to behavioral localization results 
(Chapter 4, also Kopčo, Brown, and Shinn-Cunningham, 2001) for similar configurations 
of source and listener in the room.   

                                                 
1 Published in the Proceedings of the 32nd International Acoustical Conference - EAA symposium 

"ACOUSTICS BANSKA STIAVNICA 2002" September 10 - 12, 2002 
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5.2 Methods 
5.2.1 Acoustic analysis 

HRTFs were measured for a KEMAR manikin located at the four positions in a 
classroom (Center, Back, Ear, Corner) (T60≈700 ms) shown in Figure 4-1.  

HRTFs were measured for sources in KEMAR’s right front quadrant at all 
combinations of azimuths from 0° to 90° (15° steps) and distances 0.15, 0.40, and 1 m 
(for sources in the horizontal plane containing the ears). Responses to Maximum-Length 
Sequences (e.g., see Zahorik, 2000) were measured to estimate a 750-ms-long head-
related impulse response (HRIR; 44.1 kHz sampling rate). Stimuli were presented from a 
PC computer using a TDT system, Crown amplifier, and a Bose cube speaker. Knowles 
Electret microphones mounted in earplugs in KEMAR’s ear canals were fed back to the 
TDT to make blocked-meatus recordings.  The magnitude spectrum of the measurement 
system was relatively flat (within 10 dB) between 300 Hz – 12 kHz range. The dynamic 
range was at least 40 dB at all the frequencies. HRTFs from the center-room position 
were time-windowed using a cosine-squared onset/offset window (1 ms) to obtain 
pseudo-anechoic HRTFs against which other measurements are compared. 

 Interaural level differences (ILDs) were computed as the difference 
between the left and right ear HRTF RMS energy between 2000 – 5000 Hz.  ILD 
variability was computed as the mean absolute value of the frequency-to-frequency 
difference in the ILD (using a frequency step of 1 Hz). Interaural time differences (ITDs) 
were estimated from the interaural delay producing the maximum peak in the cross-
correlation of the left- and right-ear HRIRs bandpass-filtered from 200 – 2000 Hz. 
5.2.2 Localization experiment 

Subjects were asked to localize sound sources when in the same room locations 
used for KEMAR measurements (Chapter 4 and Kopčo et al., 2001). Six normal-hearing 
subjects pointed to the perceived source location (five 150ms-long pink-noise bursts) 
presented from random locations between 0° – 90° azimuth and 0.15 – 1 m distance in 
the horizontal plane containing the ears. Each subject performed 300 trials in each room 
location. The (signed) mean error (re. actual source position) and standard deviation in 
response was computed from these results.  
5.3 Results 
5.3.1 Effect of reverberation on spectral cues 

Figure 5-1 compares HRTF magnitude spectra at the four extreme source 
positions with KEMAR in the center of the room for anechoic and reverberant conditions. 
Reverberation adds frequency-to-frequency variability to magnitude spectra. This 
variability grows with source distance and is greatest at high frequencies. Variability 
increases with source azimuth for the ear contralateral to the source position and 
decreases with azimuth for the ipsilateral ear. Reverberation also fills in high-frequency 
notches, particularly at the far ear. 



58 

 

 

Fr
eq

ue
nc

y 
(k

H
z)

Amplitude (dB)

15
 c

m
 9

0°
1 

m
 9

0°
0.

3
10

1
0.

3
10

1

20
0

16
0

rig
ht

 e
ar

le
ft 

ea
r

15
 c

m
 0

°
1 

m
 0

°

20
0

16
0

rig
ht

 e
ar

le
ft 

ea
r

an
ec

h
re

ve
rb

rig
ht

 e
ar

le
ft 

ea
r

rig
ht

 e
ar

le
ft 

ea
r

 
Figure 5-1 Anechoic and reverberant magnitude spectra at four source positions with 
KEMAR in center of room. 
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Figure 5-2 ILDs and cross-frequency variability in ILDs at 4 room locations as a 
function of source azimuth. 
 
5.3.2 Effect of reverberation on ILDs 

Figure 5-2 shows the ILD for different room locations and source positions. ILD 
magnitudes tend to decrease with reverberation, particularly for distant sources and 
conditions in which there is asymmetry in early reflections (Ear and Corner conditions). 
The frequency-to-frequency variability in the ILD (which is essentially zero in the 
anechoic condition) tends to increase with distance and is greatest for the Center 
condition. For room locations with early reflections, ILD variations are smoother and 
more systematic with frequency. 
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Figure 5-3 The peak value in the cross-correlation function within +/- 1 ms range and the 
corresponding ITD. 

 
 

5.3.3 Effect of reverberation on ITDs 

Within the biologically-plausible range (~0.8 ms), the ITD of the cross-correlation 
peak is roughly independent of source distance and room position (Figure 5-3). However, 
in reverberant conditions, the magnitude of this peak value decreases dramatically with 
distance and with the number of nearby walls. In addition, in the Corner and Ear 
conditions, a secondary peak (outside the biologically-plausible range of ITDs) can be of 
equal or larger magnitude than the primary peak in the cross-correlation. 

 Figure 5-4 illustrates that, as with the ILD, reverberation causes 
frequency-to-frequency variation in ITD. In the Center and Back conditions, this 
variation is essentially random around the “true” (anechoic) ITD. In the other conditions, 
the departures are more significant due to the early, asymmetric, strong reflections. 
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Figure 5-4 ITDs as a function of frequency in the anechoic and reverberant conditions 
for source at 90° 1 m. 

 
5.3.4 Predictions vs. localization performance 

Acoustic analysis shows that all localization cues in the signals reaching a listener are 
influenced by reverberation in a manner that depends on room position. To the extent that 
these cues determine spatial auditory perception, localization performance should also be 
influenced in a way that varies with listener location. Figure 5-5 summarizes behavioral 
results from a localization   experiment   performed   in the room in which acoustic 
measurements were taken (Kopčo et al., 2001). Two small but statistically-significant 
trends were observed. 1) Azimuthal perception in the Back and Corner positions was 
biased towards the median plane (approximately 3.5°). 2) The variance in perceived 
azimuth was smallest for listeners in the Center condition, greatest in the Corner 
condition, and intermediate for the other two conditions (bottom row of Fig. 6). 
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Figure 5-5 Across-subject mean and std. dev. of the response error, i.e., the difference 
between perceived and actual source azimuth.  

 
The azimuthal bias is difficult to explain from results of the acoustic analysis. 

Acoustically, Ear and Corner conditions are most similar and most influenced by 
reverberation, but bias is only significant for Back and Corner locations.  

 On the other hand, the increase in the azimuthal response variance is 
consistent with both ILD variability and ITD decorrelation, which are greatest for the Ear 
and Corner conditions. This explanation cannot account for changes in bias with distance: 
the variability in acoustic parameters increases with distance while variance in perceived 
azimuth decreases with distance. The decrease in response bias with distance may be 
partially explained by the measurement method. If one assumes that response variability 
is constant in x-y-z coordinates, the same error translates to larger angular errors for 
nearby sources.  
5.4 Summary and discussion 

Acoustic analysis shows that the effect of reverberation on localization cues 
varies dramatically with listener position in a room. On the other hand, effects of room 
position on localization performance are modest, at best. Some of this apparent 
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discrepancy may be resolved by considering how acoustic cues change over time (as the 
current analysis evaluates only the expected value of the cues, ignoring variation in these 
cues over time). In fact, such dynamics are known to be perceptually important (cf. the 
“precedence effect”); for instance, the localization cues available at the onset of the 
stimulus will be much less distorted by reverberation than this first-order steady-state 
analysis suggests. Further, listeners may crudely estimate the effect of reverberation on 
the received stimuli and adjust the computation of source position accordingly. Future 
analysis will incorporate physiologically-based models of auditory processing (e.g., 
Colburn, 1977a) to predict how basic localization cues in reverberant signals may be 
extracted by the brain. 
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Chapter 6 PointMap:  A real-time memory-based learning system with 

on-line and post-training pruning 

Abstract 

A new memory-based learning system, called PointMap, is introduced. PointMap, 
an extension of the Condensed Nearest Neighbor algorithm, evaluates the information 
value of its coding nodes during training, and uses this information to prune non-
informative nodes both on-line and after training. These pruning methods allow 
PointMap to control both code size and sensitivity to detail in the training data. Pruning 
helps solve two problems of traditional memory-based learning systems:  large memory 
requirements and sensitivity to noise. PointMap also overcomes the curse of 
dimensionality by considering multiple nearest neighbors during testing without 
increasing the complexity of the training process or the stored code. Information-value-
based pruning can also be used in conjunction with other learning systems. The 
performance of PointMap is compared to performance of a group of 16 nearest-neighbor 
systems on several benchmark problems. Its performance is shown to be at least as good 
as performance of these algorithms, often approaching the Bayesian optimum. 

 
Keywords: memory-based learning, nearest neighbor, on-line pruning, post-

training pruning, incremental learning 
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6.1 Introduction 
The nearest neighbor (NN) algorithm (Cover & Hart, 1967) is the basic algorithm 

of a group referred to as memory-based learning systems. During learning, NN forms a 
code by remembering all the training inputs and their associated outputs. During testing, 
NN finds, for a given unknown input, the most similar input(s) stored in the code, and 
assigns the unknown input to the same class. This strategy has been shown to achieve 
high classification accuracy while suffering from large memory and computation 
requirements, and sensitivity to noise (Dasarathy, 1991). Many methods have been 
proposed for minimizing these shortcomings. The basic approach is instance pruning 
(elimination of some instances from the code) (Lam et al., 2002). Instance pruning can be 
either incremental (starting with empty code and adding certain nodes) or decremental 
(starting with the complete code and removing useless nodes). (For a recent review see 
Wilson and Martinez, 2000). The pruning can prefer border points, central points, or 
points in between. Finally, the performance of different systems is typically evaluated in 
terms of the classification accuracy vs. the memory requirements and computational 
complexity (Lam et al., 2002). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-1 CNN algorithm simulations on the DIAGONAL data set. The training set 
consists of points uniformly distributed in the unit square, each labeled as lying above or 
below the diagonal.  (a) Test set accuracy as a function of training set size.  (b) Number 
of coding nodes as a function of training set size.  (c) Test set response pattern (dark-
above / light-below) after training with 103 points. Squares show the location of the 58 
coding points. 
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The present study focuses on the methods of pruning in NN algorithms. The 
standard definition of the problem of a NN pruning method design is: given a training set 
T, find a subset S of T such that S is as small as possible while the classification accuracy 
based on S is at least as good as the accuracy based on T. This definition assumes that the 
whole set T is available at any point in time during training and that in principle it does 
not matter whether S is derived from T in incremental, decremental, or some kind of 
batch mode. The current study looks at the NN as a system with limited resources in a 
dynamic environment. That is, the system functions in an on-line mode with the inputs 
presented sequentially, one at a time, and the system has to learn to classify them without 
growing arbitrarily large. The criterion for the design of a pruning method for such NN 
system is:  

“Let the maximum code size be fixed and assume that the system reached this 
maximum and it needs to add a new node. Find an optimum pruning strategy that will 
eliminate one of the current coding nodes such that, on average, the performance of the 
system with the pruned node replaced by the new one will improve.”  

The requirement that the performance must on average improve is necessary, 
because otherwise the system could stop learning once it reaches the maximum instead of 
adding a new node. Such pruning method is called on-line because the pruning decision 
must be made based only on the current state of the system and the current input. The 
problem of on-line pruning can be illustrated on the Condensed Nearest Neighbor (CNN, 
Hart, 1968) algorithm, the basic NN algorithm with incremental pruning. The algorithm 
starts with a coding set S containing one input from each class in T, and it adds new 
inputs from T to S only if they are misclassified by their nearest neighbor(s) in S. As 
shown in Figure 6-1, the accuracy of the CNN classification improves with presentation 
of more training points, however, the size of the code grows as well. The purpose of an 
on-line pruning method is to enable such a system to improve classification accuracy 
with presentation of more training points without the increase in the code size.  

This chapter develops an incremental learning method that improves classification 
accuracy on-line while maintaining a fixed code size in memory-based systems. An on-
line pruning method defines an indicator of the information value of coded items in a 
memory-based learning system called PointMap. PointMap estimates the information 
value of each stored input. Then, when new input needs to be added to the code, 
PointMap prunes the least informative node. Note that the addition of a new item may 
alter the information values of other coded items: in Figure 1c, for example, a point far 
from the decision boundary that is initially informative may lose its value as later points 
are added. In addition, information values may also be used to designate nodes for post-
training pruning. Both on-line and post-training pruning help the learning system to find 
an informative subset of coding inputs among a redundant or noisy set. 

Finding a simple local on-line pruning rule turns out to be non-trivial. 
Development of PointMap showed that the main feature of such rule is that it has to be 
conservative, preferring nodes that were in the system longer over the recently added 
nodes.  

The resulting system has several advantages also from the point of view of the 
traditional, off-line learning. First, when learning is off-line the system can be thought of 



67 

 

as a whole class of learning systems, because the user can choose the maximum code size 
and the system will try to find the most accurate code with that size limit. So the choice 
of whether to achieve better code compression with lower accuracy or worse code 
compression with higher accuracy is on the user’s side. As with other incremental 
pruning mechanisms, the on-line pruning enables the system to limit its code size already 
during training, i.e., it does not need to store the whole training set into memory at any 
point in time. Other advantages include: the ability to control whether the system should 
be sensitive to detail in the training data or whether it should try to generalize (i.e., 
whether it should retain inputs closer or farther from the boundary), the ability to identify 
and prune noisy data points, and the ability to completely re-learn the stored code if the 
system is in a non-stationary environment.  

A post-training pruning mechanism can be added that further extends these 
advantages of the on-line pruning. For example, the on-line pruning allows the user to use 
cross-validation to determine the minimum code size necessary for accurate encoding of 
the training data. With post-training pruning, this size can be estimated without the need 
to repeat the learning process from scratch for every new maximum code size.  

An important feature of the proposed system is its low complexity: the learning 
time is approximately the same as in the CNN, while the storage requirements can be 
arbitrarily low. 

Two data sets from Wilson and Martinez (2000) were chosen to evaluate 
PointMap against sixteen nearest-neighbor systems with instance pruning. The first one, 
called WINE, is a small data set that was chosen with expectation that PointMap will not 
perform very well because it is more complex than basic NN systems and the data set is 
not large enough to allow it to estimate well its parameters. The second data set, called 
LED, was chosen because it was large, thus allowing PointMap to get a good estimate of 
each node’s information value, and because it included multiple uninformative 
dimensions, thus testing PointMap’s susceptibility to the curse of dimensionality. In both 
simulations PointMap achieved performance near the Bayesian optimum, proving that 
increase in the number of nearest neighbors considered during testing can overcome this 
curse on certain data sets.  

Section 6.2 describes the PointMap algorithm in four parts:  the CNN algorithm 
component (Section 6.2.1), the information value computation (Section 6.2.2), the on-line 
and post-training pruning computations (Sections 6.2.3-4), and the k -nearest-neighbor 
search used during testing (Section 6.2.5), followed by algorithm summaries for training 
and testing (Sections 6.2.6-7). Section 6.3 analyzes the behavior of the PointMap 
algorithm on benchmark problems, and compares its performance with that of other 
memory-based systems. 
6.2 PointMap algorithm 

PointMap is a memory-based learning system in the family of algorithms that 
include k -nearest-neighbor (kNN, Cover & Hart, 1967), Condensed-nearest-neighbor 
(CNN, Hart, 1968), IB2 (Aha, Kibler, & Albert, 1991), and Grow and Learn (Alpaydin, 
1997). The memory of each of these algorithms is represented as a set of coding nodes 
which store input / output vector pairs from the training set. A PointMap node also 
records the number of times it has been chosen as the nearest neighbor of a new input, the 
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number of times it has made an incorrect prediction, and the number of times it has been 
deemed critical to the decision. A node that makes a correct prediction is defined as 
critical with respect to a given training input if the same system without that node would 
have made an incorrect prediction. These statistics are combined to estimate the 
information value of each node. 

The PointMap training algorithm includes condensed nearest-neighbor selection 
of the coding node, update of the information value of that node and on-line and post-
training pruning of nodes with low information value. During testing, PointMap performs 
a standard k -nearest-neighbor search, assigning each test input to the output class of the 
largest number of nodes among its k  nearest neighbors. 
6.2.1 Condensed nearest neighbor algorithm 

The CNN algorithm performs an on-line search for a minimal predictive subset of 
the training data set. During training, the algorithm sequentially checks whether an input 
would be classified correctly by the candidate nearest neighbor in the current coding set. 
If yes, the algorithm proceeds to update the statistics of the candidate node, but otherwise 
does not alter the stored memory. If the prediction is incorrect, the current input is added 
to the coded memory. Thus, only the input vectors that cause predictive error are stored. 
Compared to the full training set stored by the k -NN algorithm, the reduction in the size 
of the coding set produced by CNN can be dramatic. 
6.2.2 Information value of coding nodes 

Two performance measures, criticality and predictive accuracy, define the 
information value of PointMap coding nodes. Updating of these two values requires only 
local computations at the chosen nearest neighbor node. The criticality fraction is defined 
as the ratio of the number of times the existence of a node has been critical to correct 
predictions relative to the number of times it has won and made correct predictions. The 
predictive accuracy fraction is defined as the ratio of the number of times a node has 
made correct predictions relative to the number of times it has won the nearest-neighbor 
competition. The information value of the node is then defined as the convex 
combination: 

information value  =  γ ∗ criticality  +  1− γ( )∗   predictive accuracy 

where the criticality parameter γ ∈ 0,1[ ] indicates the contribution that the criticality 
fraction makes to the information value.  

Geometrically, the predictive accuracy fraction is highest for nodes that are far 
from the estimated decision boundaries, because nearby inputs tend to be from the same 
output class, by definition. In contrast, the criticality fraction is highest for nodes near a 
decision boundary, where elimination of a chosen node is most likely to produce a 
different prediction. Thus values of the criticality parameter γ  determine the average 
distance between coding nodes and decision boundaries. Setting γ = 0 allows predictive 
accuracy alone to determine the coding set, which therefore tends to lie away from the 
decision boundary. Setting γ = 1 produces coding sets which are clustered near decision 
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boundaries. With noise-free training data, a wide range of γ  values can produce 
reasonable results. However, coding nodes that represent noisy training inputs often have 
a high criticality fraction, so setting γ = 1 would encode much noise. On the other hand, 
setting γ = 0 and choosing nodes based on predictive accuracy alone could produce a 
code representing one small portion of input space where exemplars of one output class 
happen to be dense. For a given problem, γ  can be chosen by validation. The simulation 
examples below indicate that setting the criticality parameter γ = 0.25 is a reasonable a 
priori choice, balancing accuracy (75% weight) with criticality (25% weight) in pruning 
decisions. 
6.2.3 On-line pruning 

An on-line pruning mechanism enables a system to limit its code size during 
training. Other advantages include the ability to balance sensitivity to detail against 
generalization, elimination of noisy data points, and the possibility of relearning the 
entire stored code, when necessary, in a non-stationary environment. In PointMap, 
maximum code size is fixed at a hard limit, Cmax . During training, a new input exemplar 
is added when its nearest neighbor in the code fails to predict the correct output class. 
Once the size of the stored code reaches Cmax , the least informative node is pruned 
before the new exemplar is added. 

Note that the information value of a coding node lies between 0 and 1. When a 
new node is added, its information value is set equal to 0. This initial value represents an 
important design choice. It implies that a recently added node is almost always the first 
eliminated to make room for a new node as soon as the next incorrect prediction occurs. 
This elimination occurs even if the recent node was not involved in making the error. In 
order to remain in the code for long, a new node must quickly prove useful to other 
inputs. This property helps stabilize an existing code. 
6.2.4 Post-training pruning 

At any point during on-line learning, a subset of stored nodes with the smallest 
information values could be pruned from the coding set. Simulations in Section 3.2 
demonstrate that post-training pruning on the basis of final information values can 
substantially improve test set performance with noisy data. In this case, many nodes in 
the noisiest regions may be stored during on-line learning. Since these nodes usually have 
relatively low predictive accuracy, then tend to be eliminated first in post-training 
pruning. 
6.2.5 k -nearest neighbor testing 

The curse of dimensionality many memory-based learning systems (Cybenko et 
al., 1994). That is, when inputs are high-dimensional, these systems need to store many 
points for sufficiently dense coverage of the space, even though some of the dimensions 
may be irrelevant to outcome predictions. PointMap alleviates this problem by using 
multiple nearest neighbors to predict outcomes during testing. This strategy improves 
performance because each of the neighbors serves as an independent noisy version of the 
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current input. Voting among the neighbors is equivalent to comparing the input to the 
average of the neighbors from each category, with averaging effectively eliminating noise 
in irrelevant dimensions. 
 
Table 6-1   PointMap variables     

Description Parameter 

Training set index set   p =1KP  

Current input vector 
 
I = Ip ≡ Ip1KIpi KIpM( ) 

Correct output class for the current input O = Op
 

Code index set (stored coding nodes)   j =1KC 

Code vector j  
 
w j = w j1Kw jM( ) 

Output class associated with coding node j  Ω j  

Index of the coding node closest to the current input J  

Index of the next closest coding node Jnext  

Index of coding node for pruning J prune  

Number of inputs for which coding node j  won α j  

Number of inputs for which coding node j  won

and made a correct prediction 

β j  

Number of inputs for which coding node j  won, 

made a correct prediction, and was critical 

χ j  

Information value of coding node j  δ j  

Index set of the k  nearest neighbors during testing λ ∈ Λ  
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Table 6-2   PointMap parameters 
Description Parameter 

Criticality parameter γ ∈ 0,1[ ] 

Maximum code size Cmax ∈ 1,∞[ ] 

Number of nearest neighbors used for testing k ∈ 1,C[ ]  

Fraction of nodes to be retained after post-training pruning θ ∈ 0,1[ ] 

 
6.2.6 PointMap training algorithm 

PointMap is trained on P  input-output pairs I1,O1( ), I2 ,O2( ), … , IP,OP( ). The 
input vector Ip  has M  components 

 
I p1KIpi KIpM( ), and the integer value Op  

represents the output class to which Ip belongs. The stored code consists of the input-
output pairs w1,Ω1( ),   K  , wC ,ΩC( ). 
 

Table 6-1 lists the variables used in the PointMap algorithm. In addition, four 
parameters are determined by the user (Table 6-2). Three of these parameters influence 
PointMap training:  criticality γ  biases the system toward choosing coding nodes that are 
farther from γ = 0( ) or closer to γ =1( ) estimated decision boundaries; code size Cmax  
sets an upper bound on the size of the coding set; and a post-training pruning fraction θ  
determines how many coding nodes with low information values are discarded before 
testing. For testing, parameter k  specifies the number of neighbors that vote on the 
output prediction. 

Individual steps of PointMap training are defined as follows. A Matlab 
implementation of the PointMap code with a sample demo may be found at: 
http://cns.bu.edu/~pointmap. 
Step 1:  Code the first input 

Set p  = C  = 1 

w1 = I1 

Ω1 = O1 

α1 = β1 = χ1 = δ1 = 0 



72 

 

Step 2:  Present a new input  Vector I  denotes the current training input, and O  is its 
output class. 

Increase p  by 1 
Set I = Ip 

O = Op  

Step 3:  Choose a candidate coding node J   The algorithm searches the stored code for 
the nearest neighbor of I  using the L1 (city-block) metric.  

J = arg min
1≤ j≤C

I − w j ,  

where I − w j ≡ Ii − w ji
i=1

M
∑ , with ties broken in favor of the smallest index.  

Step 4: Update the information value of the candidate node J  
Update the number of times αJ  that node J  has won the nearest-neighbor search:  

Increase αJ  by 1 

If OJ = O, update the number of times βJ  that node J  has produced a correct 

prediction and the number of times χJ  that node J  has been critical to the correct 

prediction: 

Increase βJ  by 1 

Let  J next = arg min
1≤ j≤C
j≠J

I− w j  

If OJ next ≠ O (or if C =1),  increase χJ  by 1 

Recompute the information value δJ  of the candidate node J : 

δJ = γ
χ J

βJ +1
+ 1−γ( )βJ + 0.5

αJ +1
 

Step 5: If node J  has made the correct prediction, go to the next training item 

If OJ = O,  go to Step 7 
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Step 6: If J  has made an incorrect prediction, add a new coding node 

If C = Cmax , then eliminate the stored node J prune  with the smallest information 

value: 

J prune = arg min
1≤ j≤Cmax

δ j  (In case of a tie, choose the smallest index.) 

For 
  
j = J prune +1( )KCmax  

w j−1 = w j  

Ω j−1 = Ω j  

α j−1 = α j  

β j−1 = β j  

χ j−1 = χ j  

δ j−1 = δ j  

Set C = Cmax −1 

Initialize a new node that encodes the current input.  

Increase C by 1 

wC = I 

ΩC = O 

αC = βC = χC = δC = 0 

Step 7:  End condition  The algorithm performs a single pass through the training set. 
If p < P , go to Step 2 
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Step 8: Post-training pruning  Reduce the stored code to a fraction θ  of its final on-line 

size. 

Let Cθ = θ ∗ C  

While C > Cθ , sequentially eliminate the stored nodes J prune  with the smallest 

information values: 

J prune = arg min
1≤ j≤C

δ j  

For 
  
j = J prune +1( )KC  

w j−1 = w j  

Ω j−1 = Ω j  

δ j−1 = δ j  

Reduce C  by 1 

6.2.7 PointMap testing algorithm 

The predicted output class of a test input is determined by a majority vote of its k  
nearest neighbors in the stored code. The algorithm performs no further learning or 
pruning, and does not use information values during testing. 

Step 1: Presentation of new input  

Let I be the test input. 

Step 2: Identify the k  nearest neighbors in the stored code 

Let   Λ ⊆ 1KC{ } be the set of k  coding indices such that I− wλ ≤ I − w j   
for all λ ∈ Λ and j ∉Λ , with ties broken in favor of the smallest index. 

Step 3: Output class prediction  The predicted output class is determined by a vote 
among the k  nearest neighbors of the test input. That is, O is taken to be the class with 
the largest representation in the set Ωλ : λ ∈ Λ{ }. Tie votes may be broken in favor of 
the smallest output class number, or the output class of the nearest neighbor, or by 
weighting votes according to distances to the test input. 
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6.3 PointMap simulations 
The PointMap algorithm was tested on four simulation examples, with 

performance compared to that of other memory-based learning systems. The first 
simulations (Section 3.1) examine PointMap behavior on the noise-free SPRING data set, 
which features a multi-scale decision boundary. The second simulations  (Section 3.2) 
examine performance on the same task with a high degree of noise added to the training 
set. Sections 3.3 and 3.4 examine system performance on benchmark examples (WINE 
and LED) from the UCI repository of machine learning databases (Merz, 1996). 
PointMap results on the WINE and LED examples are compared to those of sixteen other 
k -NN-based learning systems, as analyzed by (Wilson and Martinez, 2000). 
6.3.1 SPRING simulations 

The SPRING benchmark was constructed to test whether PointMap had achieved 
its design goals. This section addresses the following questions on a noise-free version of 
the SPRING example: 

Once the stored code has reached its size limit, does further training improve test 
performance? 

Given a sufficiently large code size limit, can further training approach optimal 
performance? 

Can post-training pruning be used to estimate how many coding nodes are 
necessary to accurately represent the data set? That is, if Cmax  is chosen to be larger than 
a minimum necessary for accurate performance, will post-training pruning be able to 
eliminate redundant nodes without loss of accuracy? 

What is a good a priori parameter value to balance criticality γ  vs. predictive 
accuracy 1−γ( )? 

6.3.1.1 SPRING data and simulation parameters 
SPRING input points are uniformly distributed within the unit square. Points in 

the two output classes are located to the left or right of a zig-zag, multi-scale decision 
boundary (Figure 6-2). The present noise-free simulations have every point in the training 
set labeled correctly. The following simulations examine system performance with up to 
4 ×106 training exemplars, three code size limits (Cmax  = 20, 50, 200), and four 
criticality parameters (γ  = 0, 0.25, 0.5, 1). After each presentation of 8 ×104 training 
points, system performance was tested with three levels of post-training pruning (θ  = 0.5 
  L( ) , 0.75 (---), 1.0 (––)) on a test set grid of 101×101 points. The nearest-neighbor 
parameter k  was set equal to 1 during testing. 

6.3.1.2 SPRING results 
The solid lines in Figure 6-3 show how test set performance changes with 

additional training, after each network has reached its maximum size Cmax , without post-
training pruning θ =1( ) . For each criticality value γ  (columns), the correct prediction 
rate increases with Cmax , reaching close to 100% when Cmax = 200 .  
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The rows of Figure 6-3, show that, for all network sizes, performance of the 
unpruned system is best when criticality contributes 25% of the information value. 
Moreover, for this value of γ  , test set performance consistently improves with 
incremental learning for all code sizes. In addition, the dashed line in Figure 6-3j shows 
that, with Cmax = 200 , this system maintains test performance levels even after pruning 
the 50 coding nodes with lowest information values θ = 0.75( ) .  

Note, however, that the more drastically pruned systems θ = 0.5( )  maintain better 
performance with γ  = 0. In this case, the information value is based on predictive 
accuracy alone, so the system is selecting for good generalization as opposed to finer 
details of the decision boundary. 

 
Figure 6-2 For the SPRING problem, a multi-scale zig-zag marks the ideal boundary 
between the two classes of points in the unit square. In the noisy version, the probability 
of training set point having the wrong label is proportional to its distance to the boundary. 
Points in the figure represent 105 training exemplars from Class 2 in a noisy SPRING 
example. 

 
 

 

Class 1 

Class 2 

Decision boundary
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Figure 6-3 Simulations on the noise-free SPRING example illustrate the role of 
criticality γ = 0.0, 0.25, 0.5,1.0 for computing the information value of each point, of the 
maximum code size Cmax = 20, 50, 200, and of the post-training pruning fraction 
θ =1.0, 0.75, 0.5. When γ = 0, criticality does not contribute to the information value, 
which is based on predictive accuracy alone; when γ =1, the information value is based 
only on criticality. In each column, performance is seen to improve as the maximum code 
size increases. Within each panel, the solid line shows how test set performance varies 
with the number of training points; the dashed line shows performance by the 75% of 
nodes with highest information values; and the dotted line shows performance by the top 
50% of trained nodes. Setting γ = 0.25 achieves the best results. 

 
 
Finally, when the information value is based on criticality alone γ =1( ), 

performance levels are consistently worse than in systems with smaller γ  values. For all 
code sizes, on-line pruning even causes performance to deteriorate with additional 
training. This last observation indicates that nodes stored early in training that provide 
some degree of generalization are gradually discarded in favor of nodes near decision 
boundaries. Choosing values of γ <1 help avoid this sort of over-fitting. 
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Figure 6-4 illustrates PointMap dynamics for the simulations summarized in 
Figure 6-3. Here, each plot shows the decision regions from the beginning (after 8 ×104 
inputs) and end (after 4 ×106 inputs) of training, as well as the locations of points in the 
stored code and the test-set percent correct. These graphs show that, although there is no 
explicit feedback among nodes, on-line pruning helps to create an evenly distributed 
coding set. The rows of Figure 6-4 also illustrate that the average distance from coding 
nodes to the decision boundary decreases as the criticality parameter γ  increases. In the 
top row, where the code size is limited to Cmax = 20 , the system performs significantly 
better with small values of γ , which keeps coding nodes away from the decision 
boundary, although some contribution of criticality (Figure 6-4b) is better than none 
(Figure 6-4a). 

Note that the average distance between coding nodes and decision boundary also 
decreases as the maximum code size Cmax  increases. When sufficiently many coding 
nodes are allowed, the system is able to distribute them near the decision boundary, to 
fine-tune accurate prediction across multiple scales. A comparison of Figure 6-4a with 
Figure 6-4i shows that this clustering near the boundary can occur even with γ = 0, 
which otherwise tends to place nodes as far as possible from the boundary, for 
generalization. Clustering near the boundary can nevertheless occur in this case because 
coding nodes are added only when the system makes a predictive error, which tends to 
occur near the boundary. 

 Figure 6-4e shows that, as code size increases, larger-scale sections of the 
decision boundary are accurately delineated, while smaller scale portions are 
approximated. Even with the same number of coding nodes, setting γ = 0.25 (Figure 
6-4f) pulls the coding nodes toward the boundary, improving the approximation at the 
smaller spatial scales. 

Finally, Figure 6-4d indicates why setting γ = 1 produces a poor approximation to 
the decision boundary. Relying on criticality alone favors the selection of pairs of coding 
nodes which are near one another across the boundary. Each has a high criticality factor 
when it makes a correct prediction for a training input, because its removal would 
produce the incorrect prediction. These tightly clustered pairs produce over fitting 
because small misalignment of the nodes can produce a large error in the approximated 
decision boundary. With γ = 0.25, many pairs of coding nodes still appear on opposites 
sides of the boundary, but at some distance, producing a more stable approximation. 
6.3.2 Noisy SPRING 

To evaluate PointMap’s ability to cope with noise, simulations were performed on 
a noisy version of the SPRING example. Memory-based learning systems that look only 
for the nearest neighbor (1-NN or 1-CNN) would either perform poorly on this type of 
example, or they would generate a large code. The performance of these classifiers can be 
improved by increasing the number of the nearest neighbors k( )  making test set 
predictions. Although larger values of k  allow a system to estimate the class probabilities 
in the region around a test input, this computation increases the complexity of the 
algorithm and does not reduce the code size. Simulations below show that PointMap can 
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find a good solution (95% correct) to the noisy SPRING problem with a relatively small 
coding set and using k = 1 nearest neighbor during both training and testing. 

6.3.2.1 Noisy SPRING data and simulation parameters 
For the noisy SPRING data set, output class labels were randomly swapped on a 

subset of the training set. The probability of a class swap was 50% for points at the 
decision boundary, with the swapping probability decreasing with distance between input 
points and the boundary. Figure 6-2 shows 105 training points assigned to Class 2. 

The following simulations examine PointMap performance with one code size 
limit Cmax = 200( ), two criticality parameters (γ = 0, 0.5), and three levels of post-
training pruning (θ  = 0.1   L( ) , 0.5 (---), 1.0 (––)). As for the SPRING simulations, after 
each presentation of 8 ×104 training points, system performance was tested on a grid of 
101×101 points, with k  = 1 for nearest-neighbor search. 

6.3.2.2 Noisy SPRING results 
Figure 6-5 illustrates PointMap performance on the noisy SPRING example, with 

criticality parameter γ = 0 for the left column and γ = 0.5 for the right column. Figure 
6-5a shows that, when the information value is based on predictive accuracy along 
γ = 0( ), test set performance reaches about 95%, and remains in that range even when 

post-training pruning reduces the stored code from 200 to 20 nodes θ = 0.1( ) . 
 
 

Figure 6-4 Initial and final SPRING coding node distributions, for simulations of Figure 
6-3, without post-training pruning θ =1( ). Each panel shows the predicted decision 
region and stored coding points after an initial training phase (8 ×104 inputs) and at the 
end of the simulation ( 4 ×106 inputs). These simulations show that, once a network has 
achieved its maximum size, additional training does not automatically improve 
performance. In fact, at each network size with γ =1, on-line pruning pulls stored points 
closer to the decision boundary, but this additional training leads to a deterioration of 
test-set accuracy. In contrast, with γ = 0.25, on-line pruning improves accuracy at each 
network size. 

 

Figure 6-5 Noisy SPRING simulations with Cmax = 200. The information value in the 
left column is based on predictive accuracy alone γ = 0( ) and in the right column is 
equally weighted between predictive accuracy and criticality γ = 0.5( ).  (a) System 
performance as a function of training set size, averaged across five simulations.  (b) Final 
distribution of coding nodes and decision regions with no post-training pruning. (c) Same 
as (b), retaining 50% of the trained nodes. (d) Same as (b), retaining 10% of the trained 
nodes. 
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Figure 6-4 (see caption on previous page) 
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 At first glance, this performance appears superior to that of the system with 
γ = 0.5, especially without post-training pruning θ =1( ) . Closer inspection reveals 
additional subtleties in this comparison. With γ = 0, after an initial stable phase, 
performance steadily deteriorates with additional training. In contrast, with γ = 0.5, 
performance steadily improves, especially with post-training pruning. 

Figure 6-5b-d, which shows the final stored code and test set decision region for 
each criticality setting and each degree of post-training pruning, provides insight into 
these dynamics. Coding nodes selected on the basis of their predictive accuracy alone 
(left column) tend to be located at some distance from the actual decision boundary. The 
bias toward placing the code as far as possible from the decision boundary is balanced by 
the fact that a new node is added only in response to a predictive error. However, Figure 
6-5c-d shows that it is the nodes located farthest from the decision boundary, which have 
information value is close to 1, that remain after pruning. Although test set performance 
remains high for this particular example, the potential for over-generalization with γ = 0 
is visible where the pruned decision boundary fails to approximate the higher frequency 
portion of the spring. Slow migration of the code away from the decision boundary, and 
resulting over-generalization, also explains the deteriorating performance in the course of 
on-line learning when criticality is not a factor in the information value 

The right column of Figure 6-5b shows that giving equal weight to criticality and 
predictive accuracy γ = 0.5( ) clusters coding nodes in regions with a high concentration 
of noise, thus producing a poorly defined test set decision boundary. However, because 
information values are higher away from the actually decision boundary, test set 
performance of the pruned system steadily improves during training, reaching a level 
equal to that of the best performance with γ = 0. Moreover, pruning improves the 
geometry of the decision boundary approximation. 

These simulations hereby indicate that a problem with a high degree of noise is 
best approached by a coding strategy that balances criticality and predictive accuracy 
during on-line training, followed by post-training pruning. However, validation set 
selection of the free parameters γ  and θ  may be time-consuming. The a priori parameter 
selection γ = 0 and θ =1, which chooses nodes on the basis of predictive accuracy alone 
without post-training pruning, provides a quicker if less compact solution.  
6.3.3 WINE simulations 

The previous sections analyzed the properties of PointMap on synthetic data sets. 
The following two sections compare the performance of PointMap to performance of 
sixteen variations of the 3-nearest-neighbors classifier analyzed by (Wilson and Martinez, 
2000). The present section compares these systems on the WINE data set, which features 
a small training set. This example was chosen specifically to challenge PointMap, which 
was designed primarily to estimate coding node information values from large training 
sets.  
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6.3.3.1 WINE data and simulation parameters 
The WINE data set was obtained from chemical analysis of wines grown in a 

single region in Italy, derived from three vine varieties. The set consists of 178 13-
dimensional input patterns, each belonging to one of three output classes. Although the 
classes are linearly separable, memory-based learning systems usually do not find the 
optimum solution because of the small number of available training inputs. PointMap 
simulations employed the same 10-fold cross validation design used in the Wilson-
Martinez analysis. That is, each of ten partitions of the data set served, in turn, as a test 
set, with training on the remaining set of ~160 items and results reporting the average 
across ten the trials. 

Based on estimates obtained from a preliminary pilot study, the PointMap 
criticality parameter was fixed at γ = 0.15 across all simulations. Testing employed k =1 
nearest neighbor. Each training set consisted of 500 random permutations of the training 
set. Typically, the stored code stabilized early, but later epochs improved estimation of 
information values, for post-training pruning. Simulations examined maximum network 
sizes Cmax  ranging from 3 to 40, and post-training pruning fractions 
θ = 0.25, 0.5, 0.75, 0.9,1.0. An additional post-training pruning strategy that eliminated 
only the last-created node θ = 0.999( ) was also tested. 

6.3.3.2 WINE results 
Figure 6-6plots system performance (percent correct) on the WINE example as a 

function of the average number of input vectors stored in memory. Plotted points 
summarize performance of the 16 variations of the 3-NN classifier reported by (Wilson 
and Martinez, 2000). These systems produced only small variations in percent correct, 
averaging 93.5% and with all but one between 90.98% and 96.08%. However, the size of 
the stored memories ranged from ~3 nodes (81.47% correct) to all the nodes for 3-NN 
(94.93% correct). 

The solid curve in Figure 6-6 plots an exponential fit of PointMap performance. 
Although the maximum code sizes  up to Cmax = 40 were tested, actual code sizes never 
exceeded C = 23. Therefore simlations with larger Cmax  values used no on-line pruning, 
in which case variations were caused only by differing orders of input presentations. 
Although PointMap uses only k =1 nearest neighbor during testing, performance is 
similar to that of the collective Wilson-Martinez systems for at each code size. With 
pruning of the last-created node (widest dashes), PointMap performance improves further 
at small code sizes, with the system discovering a near-optimal solution with only C = 3 
coding nodes, and maintains performance with larger stored codes. The PointMap on-line 
pruning strategy is thus seen to succeed with small data sets as well as large ones. 
Additional curves in Figure 6-6 show exponential fits of PointMap performance on 
WINE simulations following pruning that retains from 90% (dashes) to 25% (dots) of the 
trained code. These results indicate that post-training pruning causes rapid performance 
deterioration, even when many more nodes are retained than the minimum needed for 
optimal performance. This example therefore suggests an a priori strategy for small 
training sets that prunes on line after reaching a small upper bound on code size and that 
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discards only the last node added during training. Note that this strategy differs from the 
one suggested for large noisy data sets, which was to prune a fraction of a larger code 
after training. 
6.3.4 LED simulations 

The final simulations compare PointMap performance with that of the same 16 
systems as in Section 3.3, again as reported by (Wilson and Martinez, 2000). Compared 
to the WINE example, this LED benchmark has more input dimensions, output classes, 
and training exemplars, and intrinsic noise establishes an upper bound on test set 
performance. 
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Figure 6-6 WINE simulations with γ = 0.15. For each system, classification accuracy, as 
a function of memory size, is averaged across 10-fold cross validation trials. Crosses 
denote the 16 3-NN classifiers reported by (Wilson and Martinez, 2000). PointMap 
results are plotted by exponential fit for the unpruned system (solid) curve, with 
progressively shorter dashs marking increasing levels of post-training pruning. 
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6.3.4.1 LED data and simulation parameters 
The LED task is to identify numbers  0,1,K,9 in a digital display. The first seven 

components of the binary input vector denote the presence or absence of a segment in an 
ordinary display. The task is rendered difficult by the presence of 17 more random input 
dimensions. In addition, values in the first seven components are flipped with a 10% 
probability. Because some flips can change one digit into another (e.g., 6 into 8), the 
optimal Bayes classification rate is 74%. Each output class is represented by 1,000 input 
vectors. 

In PointMap simulations, each training set was presented in random orders for 
100 epochs. As in the Wilson-Martinez paradigm, performance represents averages from 
10-fold cross validation. In a preliminary simulation (Section 3.4.2), the criticality 
parameter γ  was set to 0, the maximum code size Cmax = 40, and the number of nearest 
neighbors k  = 1, with no post-training pruning. The main simulation (Section 3.4.4) set 
γ = 0.25,  with the maximum code size Cmax =  30, 100, 300, 1000, and 3000 nodes, with 
no post-training pruning, and with parameter k  chosen by 10-fold cross-validation on the 
training set.  
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Figure 6-7 Sample PointMap simulation of the LED example with γ =0, Cmax = 40, 100 
epochs, and no post-training pruning θ =1( ).  (a) Histogram of the number of coding 
nodes for each class at the end of training.  (b) For each of the 40 stored nodes:  its index 
(with recently created nodes having larger indices), its internal code (from input 
components #1-7), the class to which it is assigned, and the final estimate of its 
information value.  
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Figure 6-8 LED simulation with γ = 0.25 and no post-training pruning. Crosses mark 
results from the sixteen 3− NN  systems reported by (Wilson and Martinez, 2000). The 
solid line shows average PointMap performance for  Cmax =30, 100, 300, 1,000, and 
3,000 nodes, the number of test set nearest neighbors k  determined by 10-fold cross-
validation on the training set. The dotted line shows PointMap results with k = Cmax 10. 

6.3.4.2 LED results: γ = 0  
A preliminary LED simulation illustrates PointMap dynamics with information 

value computation based solely on the predictive accuracy γ = 0( ). Analysis of the 
deficiencies in the structure of the resulting code point, once again, to the importance of 
including criticality in the information value calculation. 

In the simulation illustrated in Figure 6-7a, which shows the number of nodes 
stored each class 0 … 9, PointMap created an unbalanced code, with many nodes 
assigned to some classes and few, or none, to others. This imbalance occurred because 
the randomly flipped line segments had a differential effect on different classes. For 
example, flipping one of the segments in the image 8 could change it into a noise-free 
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representative of class 0, 6, or 9, though still labeled as belonging to class 8. This 
property lowers the predictive accuracy, and hence the information value, of nodes that 
correctly encode 8. In this example, where the information value is based entirely on 
predictive accuracy, class 8 was unable to retain any coding nodes. Similarly, one flip 
could change an image 3 into 9. Correspondingly class 3 retained only one of the 40 
coding nodes, with that node storing a noisy image. On the other hand, flipping any one 
segment in an image 2 would produce a non-digit, which is still likely to be chosen as the 
nearest neighbor to a test-set exemplar of class 2. Exemplars for class 2 thus produced 
high predictive accuracy values and six coding nodes, but, with the total code restricted in 
size, this overrepresentation of some classes contributed indirectly to the high test set 
error rate of others. 

Figure 6-7b shows details of the PointMap code at the end of this preliminary 
simulation. Beneath the index of each coding node is the LED image of its first seven 
stored components, its assigned output class, and its final information value. Note that the 
images of only two of the forty stored nodes (#33 and #38) were noisy. This is much 
better than chance because the 10% segment flip probability implies that fewer than one 
of every two input images is noise-free. Figure 6-7b also shows that, except for the most 
recently added node (#40) retained nodes had similar information values. 

With γ = 0 and k =1, PointMap achieved classification accuracy of 49% on the 
test set. This result is better than the 41% achieved by the standard 1-NN classifier, 
storing all training inputs, even though PointMap could not classify correctly any testing 
points from the class 8. Nonetheless, this accuracy rate is far from the optimal 74%. 

6.3.4.3 LED results:  γ = 0.25  
All PointMap simulations described so far have based predictions on the output 

class of single nearest neighbors k =1( ). The irrelevant input components #8-24 in the 
LED example introduce the curse of dimensionality (Cybenko, Saarinen, Gray, Wu, & 
Khrabrarov, 1994). As the preliminary simulations in Section 3.4.2 have illustrated, 
PointMap with k =1 does not produce satisfactory results under these circumstances. We 
will now see that higher values of k  do produce near-optimal predictions. In these 
simulations, tie votes, which are rare, are broken in favor of the smallest output class 
number. 

Crosses in Figure 6-8 represent results obtained by Wilson and Martinez on 16 
types of 3-NN algorithms. The solid line and circles in Figure 6-8 plot the average test-set 
accuracy achieved by PointMap for various values of the maximum code size Cmax . 
Here, the number of nearest neighbors k  was chosen by 10-fold cross-validation on the 
training set. The dashed line, which shows that a rule-of-thumb that simply sets 
k = Cmax 10 produces near-optimal results, indicates the robustness of this parameter 
choice. Post-training pruning might further improve PointMap performance. 

Note that Point Map selects test-set values of k  which are high compared to 
typical values, which are usually less than 10 (Alpaydin, 1997). This result might be due 
to the fact that PointMap uses more than one nearest neighbor only during testing, so the 
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meaning of setting k >1 is not the same as in a standard k -NN algorithm, which 
normally uses the same k  values during training and testing. 
6.4 Summary and discussion 

This study introduced PointMap, a simple memory-based learning system that 
computes the information value of the coding nodes to prune non-informative nodes 
during and after training. Two modes of operation of PointMap gave good results. Either 
the information value was based only on the predictive accuracy of each node, or it 
combined predictive accuracy and a criticality factor that forced the nodes to be closer to 
the decision boundary. The first choice is simpler, whereas the second one is more robust 
and it can give better performance if a good balance between the two factors is found. 
Comparison of PointMap to several code reduction techniques for the k -NN algorithm 
showed that PointMap was able to perform as accurately as any of them, with the 
additional advantage that the user can determine the resulting size of the created code.  

There are several related studies available in the literature. First, PointMap shares 
certain features with the incremental pruning NN algorithms like CNN, IB2, IB3, and the 
Grow and Learn algorithm (Wilson and Martinez, 2000). However, the on-line pruning 
mechanism eliminates the main problem of these algorithms, their tendency to consider 
noisy data as significant exceptions that need to be included into code. In terms of 
computation of the information value PointMap keeps track of how many times a given 
node was the nearest neighbor, how many times it caused predictive error, etc. In this 
aspect it is similar to the MCS algorithm (Brodley, 1993). Finally, PoinMap has the 
ability to relearn in a non-stationary environment. There are several studies that look at 
systems in environments with this so-called concept shift (the optimal mapping changes 
over time) or sampling shift (data from a certain region of the input space presented 
together).  For a review of methods used for this kind of data in connection with memory-
based learning systems see Kuh, Petsche and Rivest (1991) or Salganicoff (1997). 
However, the present study does not evaluate PointMap’s behavior with non-stationary 
data.  

PointMap presents several directions for future development. Among them are: 
evaluation of the choice of the end condition on the system behavior, automatic 
determination of the system parameters, the possibility of using different values of the 
criticality parameter γ for each node to better approximate variable-complexity decision 
boundaries, introduction of temporal degradation of information value to eliminate rarely 
activated nodes, exploration of alternative methods of on-line pruning, and evaluation of 
PointMap behavior on non-stationary data. On the other hand, the methods of 
information-value-based on-line and post-training pruning introduced here can be readily 
applied in more complex memory-based learning systems like fuzzy ARTMAP 
(Carpenter et al., 1992) and the Nested Generalized Exemplar (Salzberg, 1990). 
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Chapter 7 Graded Signal Functions for ARTMAP Neural Networks2 

Abstract 

This study presents an analysis of a modified ARTMAP neural network in which 
a graded signal function replaces the standard choice-by-difference function. The 
modifications are introduced mathematically and the performance of the system is 
studied on two benchmark examples. It is shown that the modified ARTMAP system 
achieves classification accuracy superior to that of standard ARTMAP, while retaining 
comparable complexity of the internal code.  
7.1 Introduction 

The present chapter focuses on the process of search for a best category code in 
response to a given input in ARTMAP networks. Specifically, a new signal function is 
proposed that enables the system to find near-optimum discrimination curves between 
categories in complex input space. The modified signal function is introduced 
mathematically, then evaluated by implementing it in a fuzzy ARTMAP system and 
analyzing its performance on two benchmark problems. 
7.2 Description of Fuzzy ARTMAP Dynamics 

This section gives a brief summary of the fuzzy ARTMAP algorithm (Carpenter, 
Grossberg, Markuzon, Reynolds, and Rosen, 1992). The inputs of the fuzzy ARTMAP 
system are usually normalized by complement coding, which converts an M-dimensional 
input vector a = (a1,…,aM) )10( ≤≤ ia   into 2M-dimensional input pattern 

)1,...,1,,...,()1,( 11 MM aaaa −−=−= aaI .  
The pattern is normalized since |I| = M, where |I| ∑ =

≡
M

i iI2

1
 is the city-block norm.  

When a new input is presented, the system searches for a candidate coding node 
within its coding layer. In ART systems, the j-th coding node defines a hyper-rectangle R-

j, or coding box, in the M-dimensional input space, described by the weights wi,j leading 
to that node. The hyper-rectangle reduces to a rectangle in two dimensions or to an 
interval in one dimension (Figure 7-1). For every input pattern, the ARTMAP search 
mechanism chooses the smallest coding box that is covering the input, or the box that is 
closest to the input, based on the activation of the choice-by-difference (CBD) signal 
function Tj (Carpenter and Gjaja, 1994), now used in a majority of simulations. The CBD 
signal function is defined as: 

             ( )jjjjj MRRdMT wIwa −−+∧=−−−= 2)1(),()2( ααα .          (1)  

In this equation, α is a parameter (usually α=0+), d(Rj,a) represents the city-block 
distance from the input pattern a to the coding box Rj, and |Rj| represents the size of Rj. 
The J-th coding node is chosen as a candidate code if its signal function TJ has the 
maximum value. 

                                                 
2 Published in Sinčák et al. (Eds.) The State of the Art in Computational Intelligence (Collection of 

papers presented at the Symposium on Computational Intelligence, Košice, Slovakia, 2000).  
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The candidate node is then compared with the input pattern according to a match 
rule. The candidate resonates if |I∧wJ|>ρI; or it is reset if the inequality does not hold, 
where ρ∈[0,1] is called a vigilance parameter. If reset occurs, a search for a new 
candidate is initiated, or a new coding node is created. If the candidate node resonates, 
the system checks whether the node is associated with the correct output class (always 
satisfied for new nodes). If the node is associated with an incorrect category, a process of 
match tracking is initiated, i.e., ρ is increased just enough so that the current candidate 
will not resonate any more and a search for a new candidate is initiated. 

Once a coding node is found that satisfies all the requirements, learning is 
initiated that updates all the weights leading to the J-th node, defined by 
 

                                 ( ) )()()( )1( old
J

old
J

new
J wwIw ββ −+∧= .                                  (2) 

Fast learning is usually chosen, obtained by setting β=1.  
 

 

 

   Tj 

 

 

 

     Rj 

                                                    

                                w1j                 1-w2j 

 

Figure 7-1 Choice signal for standard CBD (   ) vs. graded CBD (    ) in one input 
dimension 
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     R2 

Figure 7-2 Decision boundaries between two category boxes (R1 and R2) with standard 
CBD (   ) vs. graded CBD (    )  

 
7.3 Definition of Graded Signal Functions 

In general, the ARTMAP search for the internal code that best matches the 
presented input pattern can be accomplished by choosing one of many different signal 
functions, used to determine the activation of the coding nodes. Most current ARTMAP 
systems use the choice-by-difference signal function (CBD), which implements the idea 
of minimum fast learning. For the CBD function the signal is independent of the position 
of the input pattern if the input is located within the coding box, as shown for one 
dimension in Figure 7-1. In the present chapter, a new signal function is introduced, 
called a graded choice-by-difference function, or graded CBD, which makes the choice 
signal dependent on the input position even when the input lies within the category box.  
Namely, an input near the center of the box Rj generates a larger signal Tj than an input 
near the boundary of the box (Figure 7-1). 

The activation in the graded CBD signal function is defined by: 
 

 (3) 
 )1(),()2( jjjj RRdMT ηγαα −−−−= a



92 

 

where η is a parameter that defines by how much the activation at the center of 
the box is increased relative to the box boundaries. When η=0, graded CBD reduces to 
standard CBD (1). In (3), jγ  specifies the minimum of graded activations across 
dimensions i=1…M: 

 
 (4) 

 
 
 
In (4),  2/)1( ,,, ijMijij wwc +−≡ + denotes the center of the j-th coding box in the 

i-th dimension, and [ ] ( )0,max aa ≡+  is a rectification operator. Note that 1=jγ  at the 
center of Rj and 0=jγ  at any point a on the boundary of Rj. In order to ensure that the 
same input would choose the same category if it were immediately re-presented (direct 
access), the ART match rule was also modified, to better correspond to the new choice 
rule. In addition to the match criterion defined above, the new match rule essentially 
simulates the process of weights-update (2) followed by re-presentation of the current 
input. Then, the J-th node resonates only if the simulated update led to the desired choice 
of the winning node by direct access. The resulting graded signal function system has the 
capacity to create more accurate decision boundaries, especially when these boundaries 
are not parallel to the input space axes (Figure 7-2). 
7.4  Results on Benchmark Data and Discussion 

The performance of a fuzzy ARTMAP system with the graded CBD signal rule 
was evaluated on two benchmark problems, the circle-in-the-square (CIS) problem and a 
diagonal problem. Data sets for both problems consist of 2-dimensional uniformly 
distributed points, with the values in each dimension ranging from 0 to 1. Each data set 
has two output classes. In CIS, a point a=(a1,a2) is in the class Cout if 

( ) ( ) ,
2
15.05.0 2

2
2

1 π
>−+− aa  otherwise it is from the class Cin. In the diagonal data set 

a point is from the class Clower if a1>a2, otherwise it is from the class Cupper. Simulations 
with training sets of different sizes (100, 1000, or 10,000 points) were performed. The 
testing set size was fixed to 10,000 points. 

The results of simulations of the two benchmark problems are shown in Figure 
7-3, which shows percent correct predictions and number of coding nodes as functions of 
the value of the graded signal parameter η. In the graphs, η=0 corresponds to the 
standard CBD rule. Each point in Figure 7-3 corresponds to an average of 10 simulations 
with randomized order of inputs. For each of the conditions, application of the graded 
signal function led to improved performance, accompanied in some conditions by a slight 
increase in the internal code complexity. This improvement is mainly due to the 
improved ability of the new signal function to approximate decision boundaries not 
parallel to the axes of input feature space (Figure 7-2).  

These results indicate that ARTMAP systems with the graded CBD signal rule 
can be used for many types of pattern recognition problems, especially when the data 
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from individual classes are not easily separable, which may lead to many overlapping 
category boxes. More simulations are necessary, especially with noisy data, to better 
understand the behavior of the system in complex environments. 
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Figure 7-3 Simulations of fuzzy ARTMAP with standard CBD (η=0) and with graded 
CBD signal function (η>0). The upper row shows results of simulations with the diagonal 
data set, the lower row contains data for circle-in-the-square simulations 
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Chapter 8 Summary, conclusions, and directions for future work 

The results described in this dissertation contribute to our understanding of how 
human listeners and computational learning algorithms cope with complex, noisy 
environments. The psychoacoustic studies present new insights into how humans detect 
masked sounds in anechoic rooms and how they localize nearby sound sources in 
reverberant environments. Computational learning algorithms are proposed that use the 
methods of memory-based learning to effectively encode complex noisy data. The 
following sections summarize the results of these studies and propose future work on 
each of the studied topics. 
8.1 Detection of pure-tone sources masked by noise 

Spatial unmasking of pure tone stimuli in a simulated anechoic environment was 
measured and modeled. This work bridges the gap between past headphone studies of 
binaural unmasking and past free-field studies of spatial unmasking. In addition, to our 
knowledge this is the first study to look at spatial unmasking of nearby sources and to 
examine spatial unmasking as a function of source distance. Results show: 

1. Spatial unmasking is large for nearby sources, mainly due to large changes 
in the received level associated with changes in spatial position of the 
sources.  

2. In general, azimuthal separation of target and masker leads to unmasking. 
However, when the masker is laterally displaced relative to the listener, 
there are some conditions for which the amount of masking either remains 
constant or even increases slightly when the target is displaced from the 
masker (towards the median plane). 

3. The energetic and binaural cues are approximately equally important for 
spatial unmasking at lower frequencies (500 Hz), while the energetic cues 
dominate at higher frequencies (1 kHz). 

4. No condition was found where monaural better ear performance is better 
than binaural performance. 

5. Model predictions of spatial masking that take into account both acoustic 
changes at the ears and binaural interaction capture all important trends in 
across-subject average performance. However, current models cannot 
account for individual subject differences in the contributions of binaural 
processing and how this contribution varies with target and masker 
positions. 

These data suggest that the distribution of binaural coincidence detectors might 
differ from subject to subject, an idea that needs to be addressed with further research. 
Further work is also needed in order to understand and predict spatial unmasking for 
more complex stimuli like click-trains, tone complexes, and speech. While some data 
examining this question exists, models that predict spatial unmasking of non-speech 
complex stimuli are virtually non-existent. Finally, in order to relate these results to more 
natural, real-world settings, future experiments investigating the effect of reverberation 
on spatial unmasking are necessary. 
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8.2 Localization in reverberant rooms 
A study of the effect of experience and listener position on localization 

performance was performed with listeners at four different positions in an ordinary 
classroom. Two listener groups were used to control for the effect of experience. 
Previous acoustic analyses of the effects of the room on received sounds for the four 
listener locations allowed direct comparison of acoustics and behavior. Results suggest 
that: 

1. Both room position and experience have a measurable impact on 
localization performance. 

2. The variability in subject responses (in both azimuth and distance) was 
influenced by both room acoustics and listener experience. 

a. Response variability decreased with the acoustic complexity of the 
listener location.  

b. Experience on the task and in the room decreased response 
variability. 

3. Response bias (mean signed localization error) was not consistently 
affected by either acoustics or experience: 

a. There was no consistent effect on mean perceived distance. 
b. When the listener was located with the wall to his back, there was 

a small but consistent azimuthal bias. 
4. The effect of room position was stronger for nearby sources. 
5. The effect of experience was greater for far sources. 
6. No learning was observable within a single session. 
7. Predictions based on acoustic analysis did not match the behavioral data 

very well. 
The main questions that remain to be answered by future studies are: 

1. Is there any consistent effect of experience and room position on bias in 
azimuthal and distance perception? 

2. How does experience influence localization performance? 
a. What is the time course of performance changes? 
b. Is the effect of experience influenced by listener position? 
c. What gets learned as the listener gets more experienced with the 

room? 
Both within-subject and inter-subject variability were large in the current 

experiment, making it hard to draw firm conclusions. A possible solution to this problem 
is to perform follow-up studies in a simulated environment where the acoustic cues are 
perfectly controlled and noise in the response-measuring equipment is minimized. In 
order to model these behavioral results, simple acoustic measurements should be used to 
provide realistic inputs to peripheral models of auditory processing in order to obtain 
predictions that are more closely based on the actual processing in the brain. 
8.3 Pattern recognition 

The following two studies introduced new methods for improvement of 
classification performance of two learning algorithms when exposed to noisy data.  
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The first study introduced PointMap, a simple memory-based learning system that 
computes information value of the coding nodes to prune non-informative nodes during 
and after training. Performance of PointMap was found to be very good compared to 
multiple other memory-based learning systems. Future development of the PointMap 
system can include: 

1. Evaluation of the choice of the end condition on the system behavior. 
2. Automatic determination of the system parameters. 
3. Exploring the possibility of using different value of the γ parameter for 

each node to better approximate variable-complexity decision boundaries. 
4. Introduction of temporal degradation of information value to eliminate 

rarely activated nodes. 
5. Exploration of alternative methods of on-line pruning, and evaluation of 

PointMap behavior on non-stationary data. 
6. Applicability of information-value-based pruning methods for more 

complex memory-based learning systems like fuzzy ARTMAP and the 
Nested Generalized Exemplar. 

Of course, the most important follow-up on development of any new learning 
algorithm is to extensively test it in various applications. 

The final study presented in this thesis was introduction of graded signal functions 
into the fuzzy ARTMAP algorithm. The most recent development in the ART family of 
neural networks is the distributed ARTMAP algorithm. The graded signal function can be 
used also in this ART algorithm. However, the main prerequisite for its applicability is to 
develop a suitable match function that can secure balance in the performance of the ART 
algorithms with the new signal function.  
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Chapter 9 Appendix 

9.1 Independence of responses in study of spatial unmasking 
The behavioral experiment performed as part of the study of spatial unmasking 

(Chapter 3) used an adaptive procedure (3-down-1-up, three-interval two-alternative 
forced-choice procedure) to obtain the detection thresholds (Levitt, 1971). The procedure 
tracked the 79.4%. During the experiment the subjects appeared to react differently 
depending on the feedback. Namely, incorrect response at any level seemed to make it 
more probable that the subject will respond incorrectly in the following trial. Such a 
behavior could have two possible reasons. First, subjects could be changing their 
concentration on the task depending on the feedback. For example, the feedback saying 
that the previous response was incorrect could increase the subject’s concentration on the 
following trial, whereas positive feedback would lead to no modification of his/her 
attentional level. Second, it is also possible that the subjects learn spontaneously the 
adaptive procedure, and change their behavior accordingly. This appendix presents the 
analysis of significance of this effect, and looks at possible influence it could have on the 
measured thresholds. 

The t-test of significance was used to determine whether any such effect is 
observable. First, an estimate of the psychometric function was computed for every 
spatial configuration and for all the levels on the psychometric function for which at least 
two measurements were taken. An example of this computation is shown for one subject 
and one spatial configuration is shown in Figure 9-1. 

 
Figure 9-1 Example of the procedure used for estimation of the psychometric functions. 
The left graph shows, for one subject and one spatial condition, the number of 
measurements at different levels, given that the previous response was correct, given that 
previous response was incorrect, and overall. The data were divided into these three 
groups and the psychometric function estimates (the right-hand graphs) were computed 
for the corresponding functions. 
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Figure 9-2 Example of the distribution of differences in the estimates of points on the 
psychometric function, given previous response was correct vs. previous response 
incorrect. Data for one subject, collapsed across spatial configurations and presentation 
levels.  

 
Then, a difference in the psychometric function was computed for every spatial 

configuration and every presentation level. The difference values were then collapsed 
across spatial configurations and presentation levels, resulting in distributions similar to 
the one in Figure 9-2. 

The t-test tested the hypothesis that there is no significant difference between the 

two means, i.e.,  

H0: E{ p(correct | previous correct) - p(correct | previous not correct)} = 0 

The results are summarized in  
 
Table 9-1. When looking at individual subject performance at both frequencies 

(upper six rows), the effect is significant for subject S1 at both frequencies. The most 
significant effect is observed for S3 at 1000 Hz, but this time the shift in the mean values 
between the two conditions is in the opposite direction, i.e., the subject was more 
probable to respond correctly if the previous response was correct than when it was 
incorrect. Collapsing data across subjects led to a significant effect at 500 Hz, but not at 
1000 Hz. This is to be expected because at 1000 Hz the performance is shifted in 
opposite directions for subjects S1 and S3, and it is essentially unbiased for subject S2. 
Collapsing across subjects and frequencies led to a marginally significant effect 
(p=0.084) in the expected direction. Because this result is indecisive, a simulation was 
performed to estimate the influence this conditional dependence of response on previous 
response could have on the measured thresholds. A condition was simulated 
corresponding to the performance of the subject S3 in the 1000 Hz condition, where the 
difference in the means was the largest. In the simulations it was assumed that the 
subject’s response in the two conditions (given previous response correct and incorrect) 
can be approximated by a Gaussian distributions with the means separated by 4.74 % and 
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standard deviation of 10.1, estimated from subject S3’s performance in the 1000 Hz 
condition. The result of a simulation with 10,000 trials is shown in Figure 9-3. This figure 
shows three psychometric functions, one obtained when looking only at responses 
preceded by a correct response, one for responses preceded by incorrect responses, and 
the overall psychometric function including both conditions. The figure shows that the 
difference between thresholds estimated from responses preceded by correct responses 
and those preceded by incorrect responses is less than 0.5 dB. Therefore it can be 
concluded that, although there can be significant shifts in the thresholds depending on 
response in the previous trials, these differences are relatively small compared to the 
changes in the estimated detection threshold due to other factors. 

 
 

Table 9-1 Results of the t-test of significance on the dependence of subject’s response on 
feedback from previous trial. 

      N         M1-M2    tobs          p            
  500 Hz    S1   405      3.66 2.185  0.015      REJECT  
  500 Hz    S2   383      0.86 0.533  0.297   
  500 Hz    S3   370      0.80 0.480  0.316   
1000 Hz    S1   407      3.88 2.259  0.012      REJECT  
1000 Hz    S2   388      0.17 0.108  0.457   
1000 Hz    S3   343       -4.74        -3.098  0.001      REJECT  
  500 Hz  x-S      1158      1.82 1.907  0.028      REJECT  
1000 Hz  x-S  1138      0.02 0.018  0.493   
x-freq x-subj 2296      0.93 1.381  0.084   
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Figure 9-3 Psychometric functions estimated in a simulation assuming that subjects’ 
behavior is dependent on feedback and previous response.  
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