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Abstract. This paper deals with two aspects of the application of ART-
MAP neural networks for classification of satellite images obtained by
remote sensing of the Earth. The first part contains an analysis of the
influence of data representation and cluster determination method on
classification accuracy. Three types of representation/determination are
analyzed. Best results are obtained for Gaussian ARTMAP, an ARTMAP
neural network using gaussian distributions for identification of clusters
in feature space. In the second part, a method for evaluation of the clas-
sification quality is described. This method introduces a confidence index
which is assigned to each individual pixel of the image, thus allowing gen-
eration of a confidence map for the classified image. The confidence index
is computed conveniently exploiting features of the Gaussian ARTMAP
learning algorithm. Using a threshold determining the minimal required
confidence, this method allows one to generate a map which shows only
pixels with prescribed minimal confidence, effectively creating an addi-
tional class containing pixels classified with subthreshold confidence.

Introduction

Satellite remote sensing is a progressive way of collecting data used for gener-
ation of various kinds of maps (vegetation maps, land-use maps, etc.). Usually,
the most important part of processing of these data is classification of the mul-
tispectral imagery obtained by remote sensing. The standard approach to this
task is the application of statistical classification methods, e.g., Maximum Like-
lihood classifier [13], or methods based on crude expert-defined rules [11]. These
methods have the problem of high complexity and large data volume. It would
also be desirable to develop a more autonomously functioning classifier so that
subjective human participation in the task could be minimized.



A relatively new and potentionally useful method of classification of remotely
sensed data is the method of classification using neural networks. In the last
years, several types of neural networks have been used for classification of these
data, most of them using the Backpropagation algorithm [15]. Another class
of neural networks used in this domain is Adaptive Resonance Theory (ART)
neural networks (see, e.g., [1],[14]). For an extensive discussion of the neural
network versus statistical approaches to image processing see [12]. An interesting
approach is described also in [10].

This study concentrates on two aspects of applying ARTMAP neural net-
works for classification of remotely sensed data. First, the study gives a brief
intuitive description of the ARTMAP neural networks (Section 1). In Section 2,
performacne of three types of ARTMAP networks, differing in the cluster deter-
mination method, is compared. Section 3 then describes a method for evaluation
of classification quality for Gaussian ARTMAP neural networks.

The data for this study consists of an Landsat Thematic Mapper (TM) image
of the city of Kosice (located in Eastern Slovakia) and its environs. The whole
image consists of 368,125 7-dimensional pixels, out of which 6,331 pixels were
classified by an expert into seven thematic categories. Figure 1 shows the original
image along with the seven categories identified by expert. The following classes

Fig. 1. Original image. Highlighted areas were classified by expert (see text).

are defined in the figure: A - urban area, B - barren fields, C - bushes, D -
agricultural fields, E - meadows, F - woods, G - water.



1 ARTMAP neural networks

ARTMAP neural networks belong to a group of neural networks based on Adap-
tive Resonance Theory (ART), a theory of cognitive information processing in
human brain [9]. The ART neural networks, as this group of neural networks
is collectively known, are especially suitable for pattern recognition and classifi-
cation applications using supervised as well as unsupervised learning. The first
neural network model of this category, ART 1 [2], was a system for unsuper-
vised classification of binary input data. This model was later extended to ART
2 [4] and fuzzy ART [5], ART systems for unsupervised classification of analog
data. Also other modifications of the ART 1 model were introduced, for exam-
ple Gaussian ART [16], which uses Gaussian distributions to define individual
categories.

The next step in the development of ART models was the introduction of a
new ART architecture, called ARTMAP [6], which was designed for supervised
learning of arbitrary mappings of input vectors to output vectors. The ARTMAP
neural network, which is the basic model of ARTMAP architecture, is in its basic
version a modular system consisting of two ART 1 modules and a controlling
module called Map-field. If the ART 1 modules in the ARTMAP architecture are
replaced by fuzzy ART modules or Gaussian ART modules, a new ARTMAP
model is obtained, called fuzzy ARTMAP [3] or Gaussian ARTMAP [16], re-
spectively. The three above mentioned ARTMAP models (standard, fuzzy, and
Gaussian ARTMAP) represent basic models of the ARTMAP architecture. The
main difference among them is in the way they identify clusters in feature space.
And the first part of the present paper deals with analysis of this difference in
identification method, and its influence on computational properties of the three
systems.

1.1 ARTMAP systems dynamics

A detailed description of the dynamics of the ART and ARTMAP systems, rel-
evant to our study, can be found, e.g., in [6], [3], and [16], which contain a
description of the standard ARTMAP architecture. A simplified version of the
ARTMAP architecture was implemented for the present study. A detailed de-
scription of it can be found in [14]. In this section, an outline of the learning
process in an ARTMAP system is presented with the goal of developing an intu-
itive understanding of the learning process. The basic structure of an ARTMAP
system is shown in Figure 2. Individual blocks in the figure have the following
function:

Input Layer (F0) At the beginning of each trial, a pattern is presented into
this layer. The size of this layer (number of neurons) is equal to the dimen-
sionality of input patterns (N).

Comparison Layer (F1) In the second step of each trial (see description of the
algorithm below), the pattern from the Input Layer is copied into this layer.
In the fourth step, the Input pattern and the optimal pattern represented
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Fig. 2. Topology of ARTMAP neural networks

by the winning neuron in the Recognition Layer are compared here. If they
are significantly different, a search for a new winning F2 neuron is initiated.
The size of this layer is N.

Recognition Layer (F2) Each neuron in this layer defines one cluster in fea-

ture space (the identification method differs for different types of ARTMAP
models). The size of this layer is variable. It grows during training as new
clusters in feature space are identified.

MapField (MF) Each neuron in this layer represents one class and it receives

input by a non-zero link from all the F2 neurons (i.e., all the clusters) which
belong to the same class represented by this neuron. During training, the
content of the MF layer is identical with the content of the Output Layer.

Output Layer (OL) Each neuron in this layer represents one class defined in

the data set. At the beginning of each trial, a code of the class into which
the input pattern should be classified is copied into this layer. Each class is
represented by one neuron. The size of this layer is equal to the number of
classes (M).

The ARTMAP neural network training procedure can be described as follows:

1.

The input pattern is presented to the Input Layer. The corresponding class
code is presented to the OQutput Layer.

. The pattern from the Input Layer is identically copied into the Comparison

Layer.

If there are no neurons in the Recognition Layer (F2) or if all the F2 neurons
are reset, a new neuron is added to this layer. The connections from the F1
layer to the new neuron, which define the cluster identified by that neuron,
are initialized to values identical with the input pattern. The new F2 neuron
is also connected with the MapField neuron representing the class to which
the input pattern belongs. The algorithm then continues by Step 1 (i.e., by
a new training cycle).

If there are non-reset neurons in the F2 layer, the neuron in the Recognition
Layer (F2) defining a cluster most suitable to include the input pattern is
chosen as the winner.



5. The cluster associated with the winning F2 neuron (represented as a pattern
of connection activations) is compared to the input pattern. If the F2 pattern
does not represent the input pattern sufficiently (i.e., if these two patterns
are not sufficiently similar), the winning F2 neuron is reset and blocked
from winning for the remainder of the current training cycle. The algorithm
then returns to Step 3.

6. The winning F2 neuron identifies a cluster which belongs to a certain class
(category). If this class differs from the class to which the input pattern
belongs, the winning F2 neuron is again frozen and the similarity criterion
(see Step 5) is temporarily made stricter so that the same winning F2 neuron
can not be accepted. The algorithm then continues by Step 3.

7. If the class represented by the winning F2 neuron is identical to the class to
which the current pattern belongs, the winner is accepted and the weights
of links connecting the winning F2 neuron with the F1 layer are updated so
that the cluster associated with the winning F2 neuron is more similar to
the current input pattern.

This procedure is repeated until the network classifies all the input patterns
correctly.
In the testing/application phase, the procedure is as follows:

1. The unknown input pattern is presented into the Input Layer and copied
into the Comparison Layer.

2. A winner in the Recognition Layer is found. If the pattern represented by
the winner is not sufficiently similar to the input pattern, the system is not
able to classify the input pattern. Otherwise, the input pattern is classified
into the MapField class associated with the winning F2 neuron.

There are two adjustable parameters in the ARTMAP networks. The first of
them is the baseline similarity threshold (or so-called vigilance parameter) used
in the Comparison Layer computations. This parameter can range from zero
to one (one meaning that identity of the compared patterns is required). The
second parameter is the learning rate and again it can range from zero to one.
It has been shown before that results obtained by ARTMAP networks are
dependant on the order in which the input patterns are presented during training.
To suppress this presentation-order dependence, a method of voting is usually
applied. In this method, several (usually five) independent ARTMAP networks
are trained on the same data-set presented in different order. In the testing phase
a new pattern is classified into the class voted for by majority of the networks.

2 Influence of data representation and cluster
identification method on classification accuracy

The description given in the previous section holds, up to some minor details, for
all three modifications of the ARTMAP model compared in the present study



(standard, fuzzy, and Gaussian ARTMAP). The main difference among the al-
gorithms is in the way the Recognition Layer (F2) neurons define the clusters
they represent. This is closely related to the way in which the input patterns
have to be pre-processed before training or testing. Individual properties of the
examined models can be summarized as follows.

ARTMAP This model requires the data to be in a binary format. So, to be able
to apply it on the RS data used in this study the data has to be transformed.
We chose to use a mapping which transforms data into binary code by direct
conversion of a decimal value into a binary value. Each digit of this value is
then processed individually. This transformation has several consequences.
First, the dimensionality of the patterns (and consequently the size of the
network and the computation time) is considerably larger (eight-fold increase
for decimal numbers ranging from 0 to 255). Second, this transformation
dramatically changes relations among patterns. For example, values of 0
(00000000 binary) and 128 (10000000 binary) have in binary space the same
Euclidian distance as values of 0 (00000000 binary) and 1 (00000001 binary).
In ARTMAP, each cluster is defined by a hyperrectangle in feature space
(e.g., a cube in the three-dimensional space). In our case it means that each
cluster will be represented by a 56-dimensional hyperrectangle. It follows
that this transformation will lead to creation of different clusters for binary
data compared to analog data.

fuzzy ARTMAP This model accepts analog (continuous) data in the range
[0, 1]. So the only transformation of data that needs to be done is rescaling.
Each cluster in the Recognition Layer is again defined by a hyper-rectangle
of the same dimensionality as is the dimensionality of the input data (in the
present study, seven dimensions).

Gaussian ARTMAP In this model, each cluster in the Recognition Layer is
defined as a Gaussian probability distribution with a mean and variance in
each dimension, and a priori probability of a given cluster. This method does
not require any transformation of data. But, to obtain better comparability
with other methods, we rescaled the data in the same way as in the fuzzy
ARTMAP experiments (range [0, 1]).

2.1 Definition of task

Although all three analyzed methods are very similar, as can be seen in the above
discussion, the difference in the way they determine individual clusters should
lead to significantly different results when used for the same classification task.
The goal of this experiment is to compare the three classification methods in
terms of classification accuracy achieved. The results should suggest the most
suitable method of cluster identification for the remote sensing data used here.
Also, the goal is to present Gaussian ARTMAP as a new method for classification
of data in remote sensing. The expected results are as follows.

— ARTMAP: Because of the high dimensionality which resulting from the
transformation required by this algorithm, it is expected that the algorithm



will be very sensitive to small changes in data and its ability to generalize
will be poor.

— fuzzy ARTMAP: Based on previous studies and authors’ experiences it is
expected that fuzzy ARTMAP will perform very well in this task.

— Gaussian ARTMAP: This neural network has been never before used for RS
data classification. But the experiments performed by the authors previously
on benchmark classification tasks suggest that it should be very powerful.

2.2 Methods

The data set consists of 6331 seven-dimensional patterns. The set was randomly
divided into a training set (3166 patterns) and a test set (3165 patterns). Five
copies of the training set were created, each containing the training patterns in
a different random order. The training and testing sets were then transformed
for each individual method (binarization for ARTMAP, scaling for fuzzy and
Gaussian ARTMAP). For each method, optimal values of parameters were es-
timated using a validation technique in which a sequence of trainings and tests
was repeated for different combinations of parameter values, training on a sub-
set containing 90% of the training set and testing on the remaining 10% of the
training set. After optimal values of parameters were found, five independent net-
works of each type were trained on the training sets. All the networks were then
tested on the test set using the voting method. The parameters used in training
of each network were as follows (p-baseline vigilance/similarity, 8-learning rate,
and ~v-initial variance in Gaussian ARTMAP): ARTMAP (p =0.3,8 = 1), fuzzy
ARTMAP (p =0.8,8 = 1), Gaussian ARTMAP (p=0.0,8=1,7=0.5).

2.3 Results and discussion

The performance of the methods was evaluated in terms of per cent of correctly
classified test set patterns weighted by the size of each class (weighted PCC).
Also, a confusion matrix for each of the methods was computed. Table 1 gives

Table 1. Performance (in weighted % of correctly classified test patterns) of the three
methods on individual training sets and for voting

Set #1 Set #2 Set #3 Set #4 Set #5 Voting
ARTMAP 90.76 88.95 90.27 88.47 89.51 92.20
fuzzy ARTMAP 93.72 91.48 91.66 90.82 92..16 93.95
Gaussian ARTMAP 93.90 93.57 93.49 94.24 93.09 94.04

the performance of the three methods expressed in weighted PCC. For each net-
work type, individual performance (after training on a single training set) as
well as overall performance (obtained using voting) is shown. The results show
that the highest classification accuracy is obtained by the Gaussian ARTMAP



neural network, both on individual training sets and with voting. The classifica-
tion accuracy is slightly worse for fuzzy ARTMAP, and considerably worse for
ARTMAP algorithm. The poor performance of the ARTMAP network can be
assigned, as expected, to the poor ability of the network to generalize. This is
suggested also by the fact that this network used in each training approximately
200 F2 neurons (clusters) whereas the other two methods needed only 80 to
90 F2 neurons. Another important result shown in the table is that Gaussian
ARTMAP, compared to fuzzy ARTMAP, is much less sensitive to the training
set ordering. This observation is supported by the smaller variance in PCC ob-
tained when Gaussian ARTMAP was trained on individual training sets, as well
as by the fact that the improvement obtained by application of voting on this
method is much smaller than that for fuzzy ARTMAP. The difference in the
performance is even stronger if non-weighted PCC is used. In this case (data
not shown), Gaussian ARTMAP without voting performed better than fuzzy
ARTMAP with voting.

Tables 2, 3, and 4 show the confusion matrices for each neural network model
with voting. The tables show that, although there are significant differences in

Table 2. Confusion matrix for ARTMAP network with voting (weighted PCC = 92.20).
Each item in the table gives the per cent of pixels from a given Actual Class (column)
classified into given Predicted Class (row). The Total for each Actual Class (bottom
row) gives per cent of patterns in the test set belonging to the corresponding Actual
Class. The Total for each Predicted Class has analogous meaning

Actual Class
Predicted Class A B C D E F G Total (%)

A 84.82 035 0.52 0.00 046 000 2.64 2.21
B’ 4.02 99.40 1.57 0.00 0.00 0.00 0.00 36.84
c 2.68 0.08 75.17 0.46 046 4.55 3.25 5.40
D’ 0.00 0.00 0.52 94.11 0.00 13.13 0.61 28.78
E’ 134 016 280 0.00 98.92 0.00 0.00 6.67
F 5.80 0.00 17.13 5.46 0.00 82.13 1.22 15.36
G’ 134 0.00 227 0.00 0.00 0.19 92.29 4.74
Total (%) 2.24 36.87 5.72 2837 648 15.39 493 100.00

size of individual classes, all three methods classify almost evenly well patterns
from all the categories. Also, there is no pair of categories which would be sys-
tematically confused by any of the networks. This suggests that there is no
significant overlap in the data set and that the obtained performance reflects al-
most exclusively each network’s capability to classify the data and to generalize
information contained in the training data set. The color-encoded classification
map obtained by the Gaussian ARTMAP network is shown in Figure 3.

All these results show that Gaussian ARTMAP is the best method for the
chosen task. There is only one exception to this observation. The classification
accuracy (PCC) of this network on the training set after the training was finished



Table 3. Confusion matrix for fuzzy ARTMAP network with voting (PCC = 93.95).
Format as described in Table 2

Actual Class

Predicted Class A B C D E F G Total (%)
A 88.84 0.87 1.57 0.00 0.00 0.00 2.64 2.53

B’ 2.68 98.97 0.00 0.00 0.00 0.00 0.00 36.56

c’ 5.80 0.16 79.55 0.11 0.00 247 3.25 5.31

D’ 0.00 0.00 0.52 96.33 0.00 845 0.00 28.66

E’ 0.00 0.00 227 0.00 100.00 0.00 0.00 6.60

B’ 1.34 0.00 12.76  3.56 0.00 88.30 0.61 15.39

G’ 1.34  0.00 3.32 0.00 0.00 0.84 93.51 4.96

Total (%) 2.24 36.87 5.72 28.37 6.48 15.39 4.93 100.00

Table 4. Confusion matrix for Gaussian ARTMAP network with voting (PCC =
94.04). Format as described in Table 2

Actual Class

Predicted Class A B C D E F G Total (%)
A 91.52 0.35 1.06 0.11 0.00  0.00 1.22 2.34

B’ 0.00 99.48 0.00 0.00 0.00 0.00 0.00 36.68

C 5.80 0.00 87.24 0.11 0.00 4.55 4.46 6.07

D’ 1.34 0.00 0.00 97.22 0.00 7.21  0.00 28.72

E’ 0.00 0.16 0.00 0.00 100.00 0.00 0.00 6.54

I 0 0.00 0.00 892 257 0.00 88.04 1.22 14.85

G’ 1.34 0.00 2.80 0.00 0.00 0.19 92.90 4.80
Total(%) 2.24 36.87 5.72 28.37 6.48 15.39 4.93 100.00

Fig. 3. Classification map obtained by the Gaussian ARTMAP classifier



was always less than 100% (usually 97.7%), whereas for ARTMAP and fuzzy
ARTMAP this parameter always reached 100%. This result can be interpreted
in two ways. On the one hand it means that there may be tasks for which
fuzzy ARTMAP or ARTMAP are more suitable, e.g., in case when all the data
are available during the training. On the other hand this result underscores
the generalization capabilities of Gaussian ARTMAP because it means that the
network is able to identify and ignore noisy data in the training set.

3 Classification quality evaluation using confidence index

It is often very useful to have a measure of confidence of classification, especially
in the remote sensing area where the differences in spectral content of patterns
belonging to the same class can be quite considerable. There are several statisti-
cal approaches to this problem (see, e.g., [8]). But these methods are usually very
computationally intensive. Therefore it would be very useful to find a method
for assigning confidence to each classified pixel exploiting computations done as
part of the classification process itself. In this section, a method is developed
for evaluation of the classification confidence in Gaussian ARTMAP, the system
which showed the best performance in classification of the remotely sensed data
(see previous section).

3.1 Description of the method and results

In Gaussian ARTMAP, as mentioned in Section 2, each category comprises of a
set of clusters. Each of these clusters contains patterns from a Gaussian proba-
bility distribution defined by a mean and variance in each dimension of the input
space. When a new pattern is presented, the probability of that pattern belong-
ing to each of the existing clusters is computed using a Bayes discrimination
function (see [7], p. 24)

9;(I) = log (p(I|w;)) + log P(w;) (1)

where I is the input pattern, p(I|w;) is the conditional density of I given cluster
J, and P(wj) is the a priori probability of cluster j. In Gaussian ARTMAP the
pattern is classified into the most probable category. The probability measure of
the new pattern belonging to a given category is defined as a sum of probabilities
of the new pattern belonging to any of the clusters associated with that category,
ie.,

Ru(D)= 3 exply;(1) (2)

JEN(k)

where (2(k) represents the set of clusters associated with category k. The new
pattern is then assigned to the category k with the highest probability measure
Ry (I). If the voting method is used to suppress the influence of training pattern



ordering (see Section 1.1), the probability measure defined by equation 2 is
extended over all the networks used in voting

R =Y | Y explgju(D) (3)

=1 \jeR(k)

where V is the number of networks used for voting.

The probability measure of input I belonging to category k, Ry (I), is eval-
uated for every category. And this fact offers a straightforward way to define a
confidence of the decision made by the system when category K was chosen for
input I. We define this confidence index as

o) = — Bxd)
0 sy Ri(I)

This index is evaluated for each individual pixel of the image and its value can
range from 0 to 1. Using a simple encoding which assigns a shade of gray to each
value of index ¢(I) a confidence map for the classified image can be obtained.
As an example, Figure 4 shows the confidence map for the image classified by

(4)
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Fig. 4. Confidence map of the image classified by Gaussian ARTMAP using voting
(confidence expressed in %)

the Gaussian ARTMAP model with voting (shown in Figure 3).

Next, a confidence threshold, @, can be introduced, which defines the minimal
confidence required for a pixel to be assigned into the proposed category. Then,
if the confidence for the pixel is subthreshold, the pixel can be classified as



belonging to an unknown category. The choice of the confidence threshold value
influences two counteracting aspects of the classification. First, the higher the
value of @, the higher is the classification accuracy of the suprathreshold pixels.
But, a higher value of @ also means that fewer pixels will be classified into any
of the known categories. To analyze these two aspects, a pair of graphs is shown
in Figure 5. The dashed lines in the Figure show the threshold value (@ = 0.921)
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Fig. 5. Per cent of suprathreshold pixels of the image (on the left) and non-weighted per
cent of correctly classified pixels (on the right) as a function of value of the confidence
threshold @. See discussion in text.

which assures that 99% of the suprathreshold pixels will be classified correctly
(non-weighted). With this threshold, the system will be able to classify 87.5%
of the image. The resulting image is shown in Figure 6. In this image, the white
color represents a new category of pixels unknown to the system.

4 Conclusion

This paper gives a description of the application of three different types of
ARTMAP neural network for classification of images obtained from remote sens-
ing. First, a description of the application of the ARTMAP methods for remote
sensed data is given. Second, a comparison of performance of three ARTMAP
neural networks differing in the input data representation method and the cluster
identification method is presented. This analysis shows that Gaussian ARTMAP,
which identifies clusters as data from Gaussian probability distributions, is the
best classifier for this kind of data. Third, a method based on computational
properties of the Gaussian ARTMAP neural network is described which allows
assignment of a confidence measure, called confidence index, to the classification
of each pixel. This makes it possible to create confidence maps and thresholded
classification maps with prescribed classification accuracy. These maps allow a
deeper insight into performance of the classifier.



Fig. 6. Thresholded classification map obtained by the Gaussian ARTMAP classifier
(0 =0.921)
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