Kopco, N. K. et al.

Paper:

ARTMAP Neural Networks for Multispectral Image
Classification

Norbert Kopco*, Peter Sincak** and Stanislav Kaleta**

*Department of Cognitive and Neural Systems, Boston University
677 Beacon St., Boston, MA 02215, the U.S.A.
And CIG, KKUI, FEI TU Ka#ice, Letnd 9, 04001 KoSice, Slovak Rep.
E-mail: kopco@bu.edu
**Computational Intelligence Group, Department of Cybemetics and Al
Faculty of EE and Informatics, Technical University
Letnd 9, 04001 Kofgice, Slovak Republic
E-mail: sincak@tuke.sk
kaleta@neuron-ai.tuke.sk
[Received: May 12, 2000; accepted: July 20, 2000

This paper presents an analysis of performance of several
types of the ARTMAP neural network. The performance
of the networks is analyzed in the task of classification
of satellite images obtained by remote sensing. The analy-
sis is concentrated on the dependence of classification
accuracy on the difference in cluster type preferably
identified by each of the classifiers. Three types of ART-
MAP classifier are compared: fuzzy ARTMAP, Gaussian
ARTMAP, and Extended Gaussian ARTMAP. The main
difference among these classifiers is in the way they de-
termine/represent individual clusters in feature space.
Best results are obtained for Extended Gaussian ART-
MAP, a modification of the Gaussian ARTMAP neural
network that preferably identifies Gaussian-distributed
clusters.

Keywords: ARTMAFP, Fuzzy ARTMAP, GAUSSIAN ART-
MAP, Remote sensing

1. Introduction

During the past several years, remote satellite sensing has
become one of the main sources of data for many geographi-
cal applications, e.g., land-use and vegetation maps genera-
tion”. On one hand, this development causes that there are
more and more high-quality images easily available for all
kinds of users and applications. On the other hand, to be
able to process the huge amounts of currently available data
with appropriate quality of performance, there is a need for
highly accurate, automated, and preferably autonomous sys-
tems for image data analysis and processing. Traditional
approaches to this task are based on statistical classification
and pattern analysis methods, the most important being the
Maximum Likelihood classifier”; and on various rule-based
algorithms®. Statistical methods have several useful proper-
ties, the most important one being their optimal behavior if
several assumptions are fulfilled. The disadvantages of these
methods include their poor performance if the assumptions
are not fulfilled, as well as their large complexity in training
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time and memory requirements.

Recently, several alternative approaches have been pro-
posed to the problem of classification of remotely sensed
images. Among these approaches, artificial neural networks
play a significant role”, and among them the error back-
propagation algorithm® is the predominant method. There
are also several reports of application of the Adaptive Reso-
nance Theory (ART) neural networks in this domain®®, most
of them applying fuzzy ARTMAP neural network. W have
reported results of comparative analysis of ARTMAP, fuzzy
ARTMAP, and Gaussian ARTMAP necural networks, when
applied to the classification of remotely sensed imagery”.
The present article is a continuation of that study, introduc-
ing a new class of ARTMAP neural networks, called Ex-
tended Gaussian ARTMAP networks, and comparing the
performance of this neural network to the performance of
the previously analyzed systems. In this comparison, the
goal is to answer the question “What is the best assumption
about distribution of remotely sensed data?”. distinguishing
between hyper-rectangle data clusters preferred by fuzzy
ARTMAP, zero-covariance Gaussian- distributed data pre-
ferred by Gaussian ARTMAP, and arbitrary Gaussian distri-
butions preferred by Extended Gaussian ARTMAP.

The data for this study come from a Landsat Thematic
Mapper image of the city of Kogice in Eastern Slovakia. The
whole image consists of 368,125 7-dimensional pixels, out
of which an expert assigned 6,331 pixels into seven thematic
categories, shown in Table 1. The regions of the image
included into the training and testing dataset are shown in
Fig. 1.

2, Artmap Neural Networks

ARTMAP neural networks belong to the class of neural
networks called Adaptive Resonance Theory (ART), a the-
ory of cognitive information processing in human brain®.
Based on this theory, a whole family of neural network
algorithms was developed. These neural networks were
shown to give a very good performance in applications in-
volving clustering, classification, and pattern recognition.
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When compared to statistical and other neural-network-
based clustering/classification algorithms, these networks
usually obtain very good classification accuracy, while se-
curing proven stability and high level of compression in the
system.

An overview of the process of development of ARTMAP
neural networks can be found®, From the point of view of
this study, the currently available ARTMAP classification
systems can be divided into two groups. First, systems based
on (or systems that are a modification of) fuzzy ARTMAP
algorithm (e.g., ARTMAP-IC, ART-EMAP, etc.'”). All
these systems share the property that they prefer data clus-
ters distributed into hyper-rectangles in feature space. In
these systems, the basic properties of the original ARTMAP
design (stability, proven convergence, fast on-line learning)
are preserved, but they also have well-known disadvantages,
e.g., noise sensitivity and tendency to category proliferation.
The other group is based on the Gaussian ARTMAP neural
network'". In this group of networks, preferably identifying
Gaussian-shaped clusters, the stability and fast on-line learn-
ing properties of the fuzzy ARTMAP networks is traded for
emphasis on ability of the system to generalize and for its
decreased sensitivity to noise in the input data,

3. Analyzed Artmap Classifiers

Structurally, every ARTMAP network (fuzzy ARTMAP
or Gaussian ARTMAP) can be divided into two parts. The
first part, represented by an ART module, dynamically gen-
erates units, each identifying a single data cluster in feature
space. This part can be used autonomously for cluster analy-
sis of a given dataset. The second part serves to identify each
of the clusters found in the data with one of-the classes
defined on the dataset.

A detailed description of fuzzy ARTMAP (FA), first of
the algorithms analyzed in this study, can be found in many
previously published studies. For a description directly re-
lated to processing of data from remote sensing, the reader
is referred to publications®®. From the point of view of this
study, the most important property of this system is that the
subsystem identifying clusters in feature space preferably
identifies the clusters in which patterns are distributed as
hyper-rectangles.

The second algorithm, Gaussian ARTMAP (GA), is de-
scribed in detail, e.g.”'". Tts main feature is that it preferably
identifies clusters with Gaussian distribution, in which co-
variance (off-diagonal) coefficients in the covariance matrix
describing the cluster are fixed to zero. This restriction was
imposed on the Gaussian ARTMAP system for computa-
tional purposes, the reason being that with this kind of rep-
resentation each cluster-identifying node is described by
2*M+1 parameters, where M is the dimensionality of feature
space. This memory requirement is only slightly worse than
memory requirements of fuzzy ARTMAP networks (2*M).
But it is much lower than that of the Extended Gaussian
ARTMAP (described in the next section).
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Table 1. Classes defined in the image

Class Label
Urban Area A
Barren Fields B
Bushes C
Agricultural Fields D
Meadows E
Forests F
Water G

Fig. 1. Original image. Highlighted areas were classified by
expert (A - urban arca, B - barren fields, C - bushes, D -
agricultural fields, E - meadows, F - forest, G - water)

4. Extended Gaussian Artmap

We developed the Extended Gaussian ARTMAP (EGA)
independently of this study'®. The main difference between
this algorithm and the standard Gaussian ARTMAP algo-
rithm is in the way nodes identifying clusters in feature
space are described. In contrast to GA, in EGA each clus-
ter-identifying node 7 (also called a category) is described
by a full Gaussian distribution, i.e., each category is defined
by an M-dimensional vector W, describing the mean value
in each dimension; by a full MxM-dimensional covariance
matrix Z;, and by a scalar number #;, in which the number
of patterns coded by a given node is stored. This last number
is equivalent to the @ priori probability of the given category.
Thus, to represent an M-dimensional input 7, each category
requires M°+M+1 components.

During the process of training, each new pattern is as-
signed to the cluster where it belongs with the highest prob-
ability. This a posteriori probability of category j given
input [ is defined as:

Each category is defined by a fully described (nonseparable)
Gaussian distribution, which includes the mean values
and covariance matrices Z;, so the conditional density of /
given category j from Eq. 1 is defined as
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where X' is inversion of the covariance matrix and | Z | is

the determinant of the covariance matrix. The a priori prob-
ability of category j in Eq. 1 is
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where N is the number of categories.

For each new training pattern the winning category is
determined by first computing the Bayesian discrimination
function'® for each category j, based on Egs. 1-3:

g (D =log | 2m)2 P ) P()) =

-3 e-wrzita- u,-)] -3 log| 3| + log (P()) (4)

and then determining the nonreset category with the highest
value of the discrimination function:

J=agrmax(g{D) . ... ... 3

which represents the category to which a given pattern be-
longs with the highest probability. In all ART network, there
is a criterion of degree of match between a given input and
the proposed category J. In EGA (similarly to GA) this
match criterion is defined by first computing the measure of
match:

g () =log | )2 PU |j)) -
=-% d-wyZj' (I—Ly)j ~%log\zj|=
=g -log(PY). . ... ... . . ... ..... (6)

and then comparing this value to a vigilance parameter p. If
the condition

holds, the state of resonance occurs. If condition 7 does not
hold, the node J is reset and a new winner is determined by
Eq. 5. Finally, the class X predicted by category J is deter-
mined

where Q () maps category J to its predicted class K. If the
predicted class X is the correct one for a given input pattern,
then the parameters of the winning category J are updated.
Otherwise, match tracking occurs. This mechanism is im-
plemented by a temporary increase of the value of the vigi-
lance parameter p to a value which forces the system to reset
the current winner and thus to a choice of a new winner. The
value of the vigilance parameter p is increased to a value of

and it is reset to its original value only after a new pattern
has been presented.
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Once a category has been found which correctly predicts
the class to which the current input pattern belongs, the
parameters of this category are updated according to the
following equations
’ n‘r;ew= gld +1

W™= (1= (5 Y ud? + a3 1

SR = 00 (" 2 5+ S W W+ L) -
B A T Tyl AR Ayl Ty Sy £ R (10)

Each newly created category is in the first step of the train-
ing- algorithm initialized. Its mean values p; are set to the
values of the present input J, and its covariance matrix Z; is
set to the values of y* E, where y* is the initial variance and
E is a diagonal matrix.

During testing, the EGA behaves the same way as during
the training stage most of the time. It follows exactly Eqgs.
4-7. The difference between training and testing is only in
the method of determination of the class, to which an un-
known testing pattern is assigned. Here, similarly to the GA
algorithm, the unknown pattern is assigned to the class with
the highest cumulative probability over the whole network,
defined by

K=a:gmkax( 2 exp{g(]))) ...... (11)

jea’®

where Q! (k) defines the set of categories j mapped to the
output class k.

The different ways of mapping of the winning category
J to an output class K, described in Egs. 8 and 11, are
equivalent in that either of them can be used during the
training and/or during the testing phase. In the present simu-
lations, these equations were used as described above.

The final mechanism for improvement of classification
performance, used in most ARTMAP neural networks, is the
voting strategy. This strategy consists in training several
independent neural networks on the same training set with
the training patterns presented to each network in a different
order. Then, in the testing phase, an unknown pattern is
presented to each of the networks and the decision of each
of these networks contributes a vote to the final decision of
the system concerning the output class for a given input
pattern. In GA and EGA, this strategy is usually imple-
mented as follows

v .

K=ar " L. (12

gmax( 3 3 ewia,0) ... 02
vojeql®

where V is the number of the EGA networks participating

in voting. Eq. 12 does not define the only possible method

of voting in GA networks, but this is the way voting was
implemented in the following simulations.

5. Simulations

The goal in the present simulations was to comparé the
three classification methods (fuzzy ARTMAP, Gaussian
ARTMAP, and Extended Gaussian ARTMAP) in terms of
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their classification accuracy achieved on the image data
from remote sensing of the Earth. The results should suggest
the most suitable method of cluster identification for the
image data used here. Another goal is to present the Ex-
tended Gaussian ARTMAP as a new method for classifica-
tion of remotely sensed data,

The dataset, described in SECTION 1, was split into two
equal-sized subsets, the training and the testing set. Five
permutations of the training set were generated to analyze
the sensitivity of the examined systems to the ordering of
the data, and to evaluate the usefulness of the voting strategy
for improvement of classification accuracy in these systems.

All the simulations were run with the following values
of the network parameters, obtained by a simple cross-vali-
dation technique (p - baseline vigilance/ similarity, f§ - learn-
ing rate, and ¥ - initial std. Deviation in GA and EGA): FA
(p=08,=1,GA{p=00,p=1,y=0.5), and EGA
(p=0.0,=1,y=0.5).

6. Results and Discussion

The classification performance of the three analyzed sys-
tems is compared in terms of the weighted percent of cor-
rectly classified patterns (weighted PCC®) in Table 2. The
table shows the accuracy of classification of the testing set,
obtained by each system after training on a permutation of
the training set. Also shown is the performance of each
system obtained using the voting strategy. The results show
that the highest classification accuracy is obtained by the
Extended Gaussian ARTMAP neural network. This is the
case both for training on individual permutations of the
training set and for the system using the voting strategy. The
performance of EGA is only slightly better than that of the
GA algorithm, both in simulations with and without voting.
However, there is a significant difference in performance of
EGA (or GA) when compared to the performance of the
fuzzy ARTMAP algorithm, especially in the case without
voting. The difference among algorithms is not so signifi-
cant when voting is used. This suggests that, when compared
to the other two algorithms, the fuzzy ARTMAP algorithm
is much more sensitive to the ordering of input patterns.

More insight into the behavior of the three systems can
be obtained by analyzing confusion matrices shown for FA,
GA, and EGA in Tables 3, 4, and 5.

Table 5 was generated by a method slightly different
from Tables 3 and 4, so only the values on diagonals are
comparable among these tables. Despite this inconsistency,
it can be seen from the tables that there are significant dif-
ferences among the systems when their performance on in-
dividual classes is analyzed. The most significant difference
is in classification performance on classes A, C, and G. This
result suggests that one could create a hierarchical system
combining information from all three tested systems to ob-
tain a structure with performance superior to that of any of
the individual systems.

When system dynamics and properties of EGA vs. GA
are compared, one can conclude that the number of inter-
nally generated categories was on average 15-20% lower in
EGA than in GA. computations in EGA are much more

complex and, in this case, each category is represented by a
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Table 2. Performance (in weighted pcc) for the three compared
matheds on permutations of the training set and for voting

Set#1 Set#2 Set#3 Set#4 Set#5 Voting
Fuzzy ARTMAP 9372 9148 90.82 9082 9216 9395
Gauss. ARTMAP 9390 9357 9349 9424 93.09 94.04
Ext. Gauss. ARTMAP 93.82 9414 94.14 94.07 9388 9423

Table 3. Confusion matrix for fuzzy artmap nn with voting
(weighted pcc = 93.95). each item in the table gives the per
cent of pixels from a given actual class (column) classified
into given predicted class (row). the total for each actual class
(bottom row) gives per cent of patterns in the testing set that
belong to the corresponding actual class. the total for each
predicted class has analogous meaning

Predicted Actual Class
Class A B C D E F G Total
A’ 8884 087 157 000 000 000 264 253

B’ 268 9897 000 000 000 000 000 3656
[0} 580 016 7955 011 000 247 325 531
D’ 000 000 052 9633 000 845 000 28.66
E’ 000 000 227 000 10000 000 000 660
F 134 000 1276 356 000 8830 06! 1539
G' 134 000 332 000 000 084 9351 496
Total 224 000 572 2837 648 1539 493 10000

Table 4. Confusion matrix for gaussian artmap nn with voting
(weighted pcc = 94.04). format of table as described in Table
3

Predicted Actual Class
Class A B C D E F G Total
A’ 91,52 035 105 011 000 000 122 234

B’ 0.00 9948 000 000 000 000 000 3668
c 580 000 8724 011 000 455 446 607
D 134 000 000 9722 000 721 000 2872
E’ 000 016 000 000 10000 000 000 654
F 0.00 000 892 257 000 8804 122 14385
G’ 134 000 280 000 0.00 019 9290 4.80
Total 224 000 572 2837 648 1539 493 100.00

Table 5. Confusion matrix for extended gaussian artmap nn
with voting (weighted pcc = 94.23). format of table as de-
scribed in table iii. the method of generation of this table was
different from Tables 3 and 4

Predicted Actual Class
Class A B C D E F G Total
8873 000 563 141 141 141 1.4] vl
060 9940 000 000 000 000 0.00 unevail

000 000 8785 000 055 884 276 unawai
0.00 000 000 9621 000 379 0.00 uveavi
000 000 000 000 10000 000 0.00 unevail
0.00 000 246 739 000 90.14 0.00 uvavail
000 000 321 064 000 0.00 96.15 unavail

Total 224 000 572 2837 648 1539 493 100.00

QmmuaEs

more complex structure (a full covariance matrix has to be
stored, updated, inverted, and a determinant of it has to be
computed in every iteration). So the time and memory re-
quirements of the EGA system are larger than those for the
GA system.

Because of the way EGA represents each category
(means, full covariance matrix, and a priori probability) it
can be expected that this system would be extremely slow
when tested on high-dimensional data. However, results of
this study show that this method can be successfully used
on large datasets with low dimensionality.
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7. Conclusion

In this study, a new neural network algorithm, called
Extended Gaussian ARTMAP, has been introduced. It was
shown that despite several disadvantages, EGA is a suitable
algorithm for classification of remotely sensed images. Also,
it can be concluded that the algorithms that prefer data struc-
tured into Gaussian-distributed clusters outperform algo-
rithms that expect data distributed in clusters of
hyper-rectangular shape. EGA algorithm is suitable for clas-
sification of large low-dimensional datasets. For high-di-
mensional databases GA is the preferable algorithm. When
either of these algorithms is used, the voting strategy can be
omitted most of the time, which is not the case for the fuzzy
ARTMAP algorithm.
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