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Abstract. This study presents an analysis of a modified ARTMAP neural
network in which a graded signal function replaces the standard choice-
by-difference function. The modifications are introduced mathematically
and the performance of the system is studied on two benchmark examples.
It is shown that the modified ARTMAP system achieves classification
accuracy superior to that of standard ARTMAP, while retaining
comparable complexity of the internal code.

Keywords. ARTMAP, fast learning, graded signal function, neural network

1. Introduction

Adaptive Resonance Theory (ART) was introduced by Grossberg [1] as a
theory of human cognitive information processing. Based on the theory, a
series of real-time neural network architectures for unsupervised and
supervised learning have been developed. These networks combine fast
learning with stable category coding and are a suitable tool for many
pattern recognition problems. The ART models for unsupervised learning
include ART 1, ART 2, fuzzy ART, and distributed ART. ARTMAP, a
family of supervised ART architectures developed for classification
problems, includes the fuzzy ARTMAP and distributed ARTMAP neural
networks. A collection of papers on ART models can be found in [2], and
more recent models are summarized in [3].

The present paper focuses on the process of search for a best category code
in response to a given input in ARTMAP networks. Specifically, a new
signal function is proposed that enables the system to find near-optimum
discrimination curves between categories in complex input space. The
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modified signal function is introduced mathematically, then evaluated by
implementing it in a fuzzy ARTMAP system and analyzing its
performance on two benchmark problems.

2. Description of Fuzzy ARTMAP Dynamics

This section gives a brief summary of the fuzzy ARTMAP [4] algorithm.
The inputs of the fuzzy ARTMAP system are usually normalized by
complement coding, which converts an M-dimensional input vector
a = (a1,…,aM) )10( ≤≤ ia   into 2M-dimensional input pattern

)1,...,1,,...,()1,( 11 MM aaaa −−=−= aaI . The pattern is normalized since

|I | = M, where |I | ∑ =
≡ M

i iI
2

1
 is the city-block norm.

When a new input is presented, the system searches for a candidate coding
node within its coding layer. In ART systems, the j-th coding node defines
a hyper-rectangle Rj, or coding box, in the M-dimensional input space,
described by the weights wi,j leading to that node. The hyper-rectangle
reduces to a rectangle in two dimensions or to an interval in one
dimension (Figure 1). For every input pattern, the ARTMAP search
mechanism chooses the smallest coding box that is covering the input, or
the box that is closest to the input, based on the activation of the choice-by-
difference (CBD) signal function Tj [5], now used in a majority of
simulations. The CBD signal function is defined as:

   ( )jjjjj MRRdMT wIwa −−+∧=−−−= 2)1(),()2( ααα .  (1)

In this equation, α is a parameter (usually α=0+), d(Rj,a) represents the
city-block distance from the input pattern a to the coding box Rj, and |Rj|
represents the size of Rj. The J-th coding node is chosen as a candidate
code if its signal function TJ has the maximum value.

The candidate node is then compared with the input pattern according to a
match rule. The candidate resonates if |I∧wJ|>ρI ; or it is reset if the
inequality does not hold, where ρ∈[0,1] is called a vigilance parameter. If
reset occurs, a search for a new candidate is initiated, or a new coding
node is created. If the candidate node resonates, the system checks whether
the node is associated with the correct output class (always satisfied for
new nodes). If the node is associated with an incorrect category, a process
of match tracking is initiated, i.e., ρ is increased just enough so that the



current candidate will not resonate any more and a search for a new
candidate is initiated.

Once a coding node is found that satisfies all the requirements, learning is
initiated that updates all the weights leading to the J-th node, defined by

( ) )()()( )1( old
J

old
J

new
J wwIw ββ −+∧= .                        (2)

Fast learning is usually chosen, obtained by setting β=1.

3. Definition of Graded Signal Functions

In general, the ARTMAP search for the internal code that best matches the
presented input pattern can be accomplished by choosing one of many
different signal functions, used to determine the activation of the coding
nodes. Most current ARTMAP systems use the choice-by-difference signal
function (CBD, [5]), which implements the idea of minimum fast learning.
For the CBD function the signal is independent of the position of the input
pattern if the input is located within the coding box, as shown for one
dimension in Figure 1. In the present paper, a new signal function is
introduced, called a graded choice-by-difference function, or graded CBD,
which makes the choice signal dependent on the input position even when
the input lies within the category box.  Namely, an input near the center of
the box Rj generates a larger signal Tj than an input near the boundary of
the box (Figure 1).

The activation in the graded CBD signal function is defined by:

 (3)

       Tj

                                                Rj

                                               w1j       1-w2j

Figure 1 Choice signal for standard CBD (   ) vs. graded CBD (    ) in
one input dimension
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where η is a parameter that defines by how much the activation at the
center of the box is increased relative to the box boundaries. When η=0,
graded CBD reduces to standard CBD (1). In (3), jγ  specifies the

minimum of graded activations across dimensions i=1…M:

 (4)

In (4),  2/)1( ,,, ijMijij wwc +−≡ + denotes the center of the j-th coding

box in the i-th dimension, and [ ] ( )0,max aa ≡+
 is a rectification operator.

Note that 1=jγ  at the center of Rj and 0=jγ  at any point a on the

boundary of Rj. In order to ensure that the same input would choose the
same category if it were immediately re-presented (direct access), the ART
match rule was also modified, to better correspond to the new choice rule.
In addition to the match criterion defined above, the new match rule
essentially simulates the process of weights-update (2) followed by re-
presentation of the current input. Then, the J-th node resonates only if the
simulated update led to the desired choice of the winning node by direct
access. The resulting graded signal function system has the capacity to
create more accurate decision boundaries, especially when these
boundaries are not parallel to the input space axes (Figure 2).
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Figure 2 Decision boundaries between two category boxes (R1 and R2)
with standard CBD (   ) vs. graded CBD (    )



4. Results on Benchmark Data and Discussion

The performance of a fuzzy ARTMAP system with the graded CBD signal
rule was evaluated on two benchmark problems, the circle-in-the-square
(CIS) problem and a diagonal problem. Data sets for both problems consist
of 2-dimensional uniformly distributed points, with the values
in each dimension ranging from 0 to 1. Each data set has two
output classes. In CIS, a point a=(a1,a2) is in the class Cout if

( ) ( ) ,
2

1
5.05.0 2

2
2

1 π
>−+− aa  otherwise it is from the class Cin. In the

diagonal data set a point is from the class Clower if a1>a2, otherwise it is
from the class Cupper. Simulations with training sets of different sizes (100,
1000, or 10,000 points) were performed. The testing set size was fixed to
10,000 points.

Figure 3 Simulations of fuzzy ARTMAP with standard CBD (η=0) and with
graded CBD signal function (η>0). The upper row shows results of simulations
with the diagonal data set, the lower row contains data for circle-in-the-square
simulations
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The results of simulations of the two benchmark problems are shown in
Figure 3, which shows percent correct predictions and number of coding
nodes as functions of the value of the graded signal parameter η. In the
graphs, η=0 corresponds to the standard CBD rule. Each point in Figure 3
corresponds to an average of 10 simulations with randomized order of
inputs. For each of the conditions, application of the graded signal function
led to improved performance, accompanied in some conditions by a slight
increase in the internal code complexity. This improvement is mainly due
to the improved ability of the new signal function to approximate decision
boundaries not parallel to the axes of input feature space (Figure 2).

These results indicate that ARTMAP systems with the graded CBD signal
rule can be used for many types of pattern recognition problems, especially
when the data from individual classes are not easily separable, which may
lead to many overlapping category boxes. More simulations are necessary,
especially with noisy data, to better understand the behavior of the system
in complex environments.
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